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INTRODUCTION

The success of any project depends on starting with a good 
concept. For the design of structural steel trusses and 

other structures, the geometrical arrangement of the mem-
bers is often the most important consideration in producing 
an efficient and well-behaved design. Although efficiency 
has always been a chief design consideration, its importance 
has increased lately as designers seek to minimize the carbon 
footprint in the construction of new structures. Where can 
the designer seek guidance in creating layouts that achieve 
the goals of efficiency and good behavior? A good place to 
begin is at the start of modern structural engineering.

The mid-19th century was a key period in the advance-
ment of the understanding of structural behavior. The the-
ory of elasticity had already been highly advanced through 
the development of elastic “aether” theories, and many 
mathematicians, scientists and natural philosophers were 

extending their studies into structural mechanics, as well 
as optics, electricity and magnetism. Their interest in struc-
tures was undoubtedly further influenced by the advent of 
the railroad.

The emergence of railroads led to technological chal-
lenges and advancements. The railroads needed bridges and, 
as a response, the first metal truss bridge was built in the 
United States in 1840 and in the United Kingdom in 1845 
(Timoshenko, 1953). The great thinkers of the time began 
focusing their thoughts upon the practical issues of trusses 
and bridges and, in doing so, pushed the limits of struc-
tural engineering. One such example is the British Astrono-
mer Royal, George Biddell Airy, who not only studied the 
stars, but also developed his famous Airy stress function in 
response to Stephenson’s Britannia Bridge (Airy, 1863).

This paper reviews some important works by Rankine, 
Maxwell, Cremona and Michell that still have great rel-
evance to modern design. Today’s structural engineer can 
combine the ideas of these great innovators with modern 
topology optimization tools to develop structural concepts 
for steel trusses and other structures. By combining these 
concepts with practical considerations of constructability 
and cost, the structural engineer can develop responsible 
designs that can minimize the carbon footprint in the con-
struction of new structures and help reduce the consumption 
of our natural resources.

Please note the theories and findings included in this 
paper are based on equilibrium and compatibility and, 
when calculating volume, strength or deflection, constitu-
tive relationships assuming linearly elastic material. The 
analysis and exploration of the effects of geometric and 
material nonlinearites on optimal topology layouts is under 
investigation by a number of researchers.
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MAXWELL’S THEOREM ON LOAD PATHS

When famously asked if he had stood on the shoulders of 
Newton, Albert Einstein replied, “That statement is not 
quite right. I stood on Maxwell’s shoulders” (Forfar, 2012). 
James Clerk Maxwell was one of the greatest thinkers of the 
19th century and, although best known for his work in elec-
tromagnetic theory, his influence extends to various other 
scientific subjects, including significant work in structural 
engineering.

In his 1864 paper, “On Reciprocal Figures and Diagrams 
of Forces,” Maxwell [who begins his paper with a reference 
to Rankine’s (1864) work on the equilibrium of polyhedral 
trusses] developed a theorem that essentially states that the 
sum of a structure’s tension load paths minus the sum of 
the compression load paths is equal to a value related to the 
applied external forces (including reactions). In this paper, 
the term load path for a structure or group of members 
refers to the sum of the axial force in each member times its 
length. Expressed as an equation, Maxwell’s theorem can be 
written as follows (Cox, 1965):

 
F L F L P rT T C C i i∑ ∑ ∑− = ⋅

 
(1)

The value on the right side is the dot product of all the 
external forces, Pi , with position vectors from an arbitrary 
origin, ri. This dot product ( P r P r cosi i i i∑ ⋅ = θ, where

θ is the angle between vectors Pi  and ri) can be viewed as 
a representation of the negative of the work it takes for all 
the external forces to cancel all the reactions. Its proof is 
straightforward: If there is a truss with a series of applied 
external loads that are in equilibrium with a set of inter-
nal forces (see Figure 1) and, from an arbitrary point, if the 
space is dilated so that all the nodes become twice as far 
from the origin as they were originally, all the tension forces 
will do positive work equal to the tensile force in each mem-
ber times the member length. The compression members 
will also double in length but will do negative work. From 
conservation of energy, the total internal work will be equal 
to the work done by the external forces, which is equal to the 
dot product on the right side.

While this theorem has generally been lost to the engi-
neering profession, it represents a very powerful idea that 
has great potential in the design of trusses. It tells us that the 
longer the total tension load path, the longer the compression 
load path must be for a set of external loads of given magni-
tude, direction and position. Stated another way, if a tension 
(or compression) load path is “too long,” the truss will be 
penalized twice—once in tension and once in compression. 
Thus, if we can find a configuration that minimizes the ten-
sion load path, the compression load path will automatically 
be minimized and vice versa.

A further observation is that if a structure only has tension 
members or only has compression members, it is already a 
structure of minimal load path, assuming that the points of 
applied loads and reactions do not change as the geometry 
of the structure changes.

Figure 2 shows an illustration of Maxwell’s theorem using 
the loads and supports of a cantilever with a 3:1 span. If the 
origin is placed at the lower left point of the cantilever, the 
dot product can be easily calculated and is equal to PB. Thus, 
according to Maxwell’s theorem, the difference between the 
tension load path and the compression load path is PB.

It can also be shown that the constant PB represents the 
negative of the work needed for the applied loads and reac-
tions to cancel each other. For example, by moving the two 
horizontal forces together to cancel one another, zero work 
is done because the movement is perpendicular to the direc-
tion of the forces. Furthermore, if the vertical force at the 
lower right of the cantilever were to be moved and placed 
directly below the upper vertical load, zero work is still done 
but, as this load is moved to the point in which the vertical 
loads are canceled, negative work equal to Maxwell’s con-
stant PB is done.

LOAD PATHS OF DIFFERENT  
TRUSS GEOMETRIES

The efficiency of the cantilever constructed to carry the 
loads shown in Figure  2 can be examined by considering 
a series of different truss geometries. For example, the 
first considered geometry might be the moment diagram, 
which, although it has the shortest path, is not the shortest 

Fig. 1. Geometrical proof of Maxwell’s theorem. Fig. 2. Illustration of Maxwell’s theorem using a 3:1 cantilever.
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load path structure (Figure  3). Here, the force in the ten-
sion member times its length gives the total tensile load path 
F L PB10T T∑ = , while the force in the compression

member times its length results in a total compressive 

load path of F L PB9c C∑ = , resulting in a difference of 

F L F L PBT T C C∑ ∑− = , as predicted by Maxwell’s theo-

rem. The total load path is F L F L PB19T T C C∑ ∑+ = . But 

how much would such a truss deflect? Using the Principle 
of Virtual Work, the deflection can be expressed as follows:

 

nFL

EA
Δ ∑=

 
(2)

and, if this is a fully stressed structure with equal stresses in 
tension and compression, the truss will deflect by 19σB/E.

Another classic solution to the 3:1 cantilever is the Pratt 
truss (Figure 4). Here, the summation of the tension member 
forces times their corresponding lengths is F L PB9T T∑ = , 
and the summation of the compression member forces times 
their corresponding lengths is F L PB8C C∑ = . The differ-
ence is once again Maxwell’s constant, PB, but the total 
load path has decreased to 17PB, while the deflection has 
decreased to 17σB/E. Although the Pratt truss has a higher 
total length of members, it has a shorter load path; the 
change in geometry decreases the total load path and, cor-
respondingly, the deflection.

A closer examination of the Pratt truss reveals that the 
diagonals carry the loads from the point of load application 

to the reactions at the supports. The verticals do not carry 
the loads closer to the supports of the truss; can they, 
then, be replaced with a different layout? This observation 
prompts an examination of a Warren truss (Figure 5). In this 
type of truss, the tension load path is further reduced to
F L PB8T T∑ = , and the compression load path is reduced

to F L PB7C C∑ = . While the difference remains at PB, the 
total load path has been further reduced to 15PB, and the 
corresponding deflection is reduced to 15σB/E. By chang-
ing the geometry of the structure, it is possible to reduce 
the volume of material and make it stiffer—a remarkable 
achievement.

Figure  6 shows a truss with a still shorter load path. It 
represents a minimum load path solution for a structure with 
a geometry bounded to a depth B and 12 members. Although 
it appears a bit unusual, the geometry is very regular with 
the intersection of all the tension and compression mem-
bers happening at nearly the same angle. If the angles are 
made to be the same, the load path only increases 0.03%. 
For a span to depth ratio of 2.63:1, the angle between the 
tension and compression members will be 60 degrees, and 
the triangles become 30/60/90 right triangles. The solution 
in Figure 6 provides a benchmark for judging the efficiency 
of other geometries.

Minimum load path is not the only consideration in 
selecting a final solution. For example, the designer needs 
to consider issues such as complexity, cost, usability, aes-
thetics, multiple loading conditions and permitted stresses 

Fig. 3. Truss geometry selected for shortest path,  
which coincides with the moment diagram.

Fig. 4. Geometry of a Pratt truss.

Fig. 5. Geometry of a Warren truss.

Fig. 6. Bounded optimal truss with 12 members.
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for tension and compression. For example, if the designer 
decides to limit the number of compression members to a 
minimum, Figure  7 provides a solution. Once again, this 
structure is very regular, with all the tension members from 
the support intersecting the compression chord at the same 
angle. A comparison to the geometry in Figure 6 shows that 
the Figure 7 geometry has a load path that is 10.9% larger.

A comparison of these geometries is provided in Table 1. 
It is advised that the reader study the relationships among the 
internal forces, total load paths and deflections to develop 
his or her own insight into the problem.

Deflections are often an important consideration in the 
design of structures. If a structure is uniformly stressed, 
the relative volume of steel needed by alternate truss geom-
etries to achieve a target deflection can be shown equal to 
the square of the ratio of the load paths. This can be shown 
as follows.

If the volumes of any two structures in Table 1 are com-
pared with one another, we have:

 
V

PB
1

1

1
= α

σ  
(3)

and

 
V

PB
2

2

2
= α

σ  
(4)

where α represents the coefficient of the sum of the load 
paths in Table 1. Because the deflection is set to be equal,

 

B

E

B

E
⇒ 1 1 2 2 2

1

2
1= α σ = α σ σ = α

α
σΔ

 
(5)

Thus, the ratio of the volumes can be computed as

 

V

V

PB

PB
2

1

2
2

1 1

1

1

2

1

2

=

α
α σ
α
σ

= α
α

⎛
⎝⎜

⎞
⎠⎟

 

(6)

This example shows that load path is a major consider-
ation in the efficiency of deflection-controlled designs. For 
example, the Pratt truss in Table  1 needs 28% more ton-
nage to achieve the same deflection as the Warren truss or 
38% more material than the Bounded Optimal truss with 12 
members.

The preceding examples certainly beg the question: How 
low can one go? The geometry of the lowest unbounded 
load path structure and the magnitude of its load path have 
been studied in the work of Mazurek and colleagues (2011; 
2012) (see Figure  8). This research shows that the struc-
ture of minimal load path has a value of approximately 
F L F L PB13.17T T C C∑ ∑+ = . Once again, all the tension 

Table 1. Load Path and Deflection Comparisons for 3:1 Cantilever

Tensile Load 
Path,  
F LT T∑

Compressive 
Load Path, 

F LC C∑

Difference in 
Load Paths, 
F L F LT T C C∑ ∑−

Sum of Load 
Paths,  

F L F LT T C C∑ ∑+ Deflection,  
∆

Moment diagram truss 10PB 9PB PB 19PB
B
E

19
σ

Pratt truss 9PB 8PB PB 17PB
B
E

17
σ

Warren truss 8PB 7PB PB 15PB
B
E

15
σ

Bounded optimal truss 7.7PB 6.7PB PB 14.47PB
B
E

14.47
σ

Compression chord cantilever 8.52PB 7.52PB PB 16.04PB
B
E

16.04
σ

Fig. 7. Cantilever with only compression chord.
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members intersect the compression members at the same 
angle. Although a structure in Figure 8 would generally be 
deemed impractical, it does provide a benchmark for judg-
ing alternate solutions. This will be discussed further in a 
later section.

AN APPLICATION OF MAXWELL’S THEOREM

For structures in which the external loads do not change as 
the geometry changes (generally simply supported struc-
tures), the dot product of the external forces and an arbi-
trarily selected origin will be a constant. Using this constant, 
Maxwell’s theorem can determine the entire load path of a 
structure by calculating the constant and either the compres-
sion or tension load paths. The total load path is equal to 
twice the tension load path minus the constant or twice the 
compression load path plus the constant.

For example, consider Exchange House in London for 
which the first author (Baker) led the structural engineering 
team in the 1980s (Figure 9). This is a 10-story office build-
ing that spans over a series of rail lines and is supported by 
four 7-story parabolic arches. The author was not aware of 
Maxwell’s load path theorem at the time of the design, so 
the geometry was developed using labor-intensive paramet-
ric studies. These parametric studies can be replaced by a 
simple application of Maxwell’s theorem.

It can be inferred from Maxwell’s theorem that if the ten-
sion load path is minimized, the total load path will also be 

minimized. To simplify calculations, the parameters B, H 
and W are used to describe the span and height of the build-
ing and the width tributary to an arch; z denotes the depth of 
the arch; and γ is the average density (weight including live 
load) of the building. In what follows, the columns and hang-
ers will be simplified by considering them as a continuum.

The tension load path can be readily calculated, as shown 
in Figure  10. The force in the tie is equal to the overall 
moment in the system divided by the depth of the arch,  
γWHB2/ 8z; the length of the tie is equal to the width of the 
building, B. The total load path for the tie is γWHB3/ 8z. The 
load path of the hangers in Figure 10 can also be calculated 
as follows:

Fig. 8. Optimal geometry for 3:1 cantilever  
based on the three-point load solution.

Fig. 9. Exchange House in London.
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F L Wy dy dx WBz2  

4

15hangers
T T

B
z

x

B

0
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2
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(7)

Thus, the total tension load path is the sum of the tie and the 
hangers:

 
F L F L F L WBz

WB H

z

4

15
 

8
T T

hangers
T T

tie
T T

2
3

∑ ∑ ∑= + = γ + γ

 
 (8)

The depth of the arch that will minimize the total load 
path of the structure (tension and compression load paths) 
can be found by taking a simple derivative of Equation 8:

 

d F L

dz

Bz B H

z
z

B H
0 

8

15 8
0   

15

64

T T 3

2

2
3

∑( )
= −⇒ ⇒= =

  
 (9)

How does this result, based on a continuum, compare to 
the discrete problem with a finite number of columns and 
floors? Although not presented here, the authors have com-
pared the results from Equations  8 and 9 to a calculation 
based on the discrete members of the Exchange House proj-
ect and have found that the results are within 2%.

It should also be noted that the actual height of the 
Exchange House arch is lower than the optimum height 
because of a design requirement to find a close match of the 
parabolic arch to the grid of the columns and floors. The 
premium of the lower arch was deemed appropriate for the 
resulting simplicity of the connections, location of work-
points, etc.

Maxwell’s theorem can also be used to calculate the total 
load path of the structure. For this structure, the dot prod-
uct, P ri i∑ ⋅ , is a constant that is very easily calculated; it is
equal to the load path that would exist if the building sat on 
the ground and was only supported by columns (Figure 11).

 

∑ ⋅ = −γ ⋅

= − γ

P r BHW
H

BH W

2

2

2

� �

 

(10)

Using twice the tension load path minus the constant, the 
total load path of the structure can be calculated as follows:

 

∑ ∑ ∑( )= − ⋅

= γ + γ




− − γ





= γ + +
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(11)

The total steel tonnage of the structure can now be esti-
mated. For a structure of this scale, it is not unusual for the 
permitted tensile and compressive stresses for steel to be 
very similar. The tension members are controlled by the net-
section issues; the compression members are controlled by 
buckling capacity. Dividing the total load path by an esti-
mated average stress, σ, will provide an estimated total ton-
nage of steel.

Hopefully, this example helps the reader appreciate the 
power of Maxwell’s theorem. The theorem enables the opti-
mization for the conceptual design of a large structure and 
an estimate of the total tonnage of steel in a few short calcu-
lations without actually sizing a single member.

It is worth reflecting that the preceding process calcu-
lated the load path in the arch without directly calculating 
the forces in the arch. How is this possible? It is instructive 
to examine Figure 12. The load path in a diagonal member 
(such as a segment of an arch) is equal to the vertical compo-
nent of the force times the vertical dimension of the member 
plus the horizontal component of the force times the hori-
zontal dimension of the member. Using this knowledge, the 
following analysis shows how the arch load path is implicitly 
included.

Fig. 10. Schematic of the building dimensions and tension members (tie and hangers) for Exchange House.
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For the total structure (Figure 13), from Maxwell’s 
theorem, it can be shown that

 
∑ ∑ ∑ ∑= + − ⋅FL F L F L P r2 2
total tie

T T
hangers

T T

� �

 
(12)

This must also be equal to

 

∑ ∑∑ ∑ ∑= + + +FL F L F L F L F L
total tie

T T
hangers

T T

columns
above arch

C C
arch

C C

 

(13)

The dot product in Equation 12 can be split into two val-
ues: the load path above the arch and the load path below 
the arch, as if the structure was supported directly on the 
ground:

 

∑ ∑∑⋅ = − −P r F L F L
columns

above arch

C C

columns
below arch

C C

� �

 

(14)

Therefore, substituting into the total load path equation, the 
load path of the arch is simply

 

∑ ∑ ∑= ∑ + +F L F L F L
arch tie

T
hangers

T TT

columns
below arch

C CF LC C

 

(15)

which is shown graphically in Figure 14.
Here, we can see that the horizontal load path of the arch 

is equal to the horizontal load path of the adjacent tie plus 
the vertical load paths of the adjacent hangers plus the ver-
tical load paths of the columns that were eliminated when 
the arch system was used instead of sitting directly on the 
ground. This is a remarkably sophisticated result from Max-
well’s very simple equation.

MICHELL TRUSSES

In 1904, A.G.M. Michell wrote a seminal paper in which 
he outlined the principles of trusses with the shortest pos-
sible load paths and presented a limited number of solutions. 
Michell started with Maxwell’s load path theorem and con-
cluded that, if a continuous orthogonal deformation field is 
produced where all the tension elements are equally strained 
(elongated) and all the compression elements experience the 
same strain but are compressed, then the structure defined 
by these strain fields will be minimal, with the total load 
path of the structure equal to the work done by the exter-
nal forces moving in this assumed displacement field. These 
displacement fields must satisfy certain mathematical rela-
tions and result in orthogonal tension and compression strain 
fields. It should be noted that the mathematics of these strain 

Fig. 11. Schematic for Exchange House  
with column support only.

Fig. 12. Segment of an arch decomposed into a horizontal and vertical component.
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fields are related to the slip lines in the Theory of Plasticity.
Discussed next are some of the truss geometries of mini-

mal load path structures included in Michell’s 1904 paper 
(see Figure  15). Because Michell approached the problem 
from the point-of-view of continuum mechanics, it should 
be noted that the following solutions permit an infinite num-
ber of elements (only a few of the members are drawn in 
the bicycle wheel like structures or the equilateral spirals 
of Figure 15). Nevertheless, Michell trusses are quite use-
ful because they provide insight into optimal geometries 
and are benchmarks of the shortest possible load path for a 

given structure. In the design of practical trusses, however, 
the final structures are composed of a finite number of ele-
ments. Thus, it is useful to look at the discretized versions 
of these optimal solutions, commonly referred to as discrete 
Michell trusses or discrete optimal trusses.

DISCRETE OPTIMAL TRUSSES

Research on discrete Michell trusses has produced results 
that are also useful in understanding optimal load path 
structures. Though these discrete Michell truss structures 

Fig. 14. Calculation of load path of the arch for Exchange House

Fig. 13. Total load path of Exchange House.
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are often impractical to build, they provide excellent bench-
marks for designers in terms of efficiently utilizing materi-
als. Recent work by Mazurek and colleagues (2011; 2012) 
and has shown that these discrete trusses can have amazing 
regularity and order. In the class of problems in which there 
is a symmetrical cantilever with two points of support and a 
single load, the complete geometry can be described using 
only one angle (denoted by α in Figure  16); the adjacent 
angles are right angles or complements of the first angle. An 
example can be seen in Figure 16, which was also studied 
by Chan (1960).

It is interesting to note that the optimal structure for the 
discrete Michell cantilever in Figure  16 is composed of 
several substructures, each of which is also optimal for the 
given number of members and connectivity. For example, 
the optimal geometry for a structure of two members is 
shown in the substructure, ξ2, of Figure  16. Likewise, for 
eight members, the optimal structure is embedded in the 
larger optimal structures, composed of 18, 32, 50 and so on 
members. For a complete set of graphical rules to construct 
such geometries for three-point or three-force structures, the 
reader is referred to Mazurek and colleagues (2011; 2012).

The exact derivation of the optimal geometry for discrete 
trusses using Michell’s theories or graphical rules, such as 
those shown by Mazurek and colleagues (2011), is often 
quite difficult for complicated loadings. Fortunately, today, 
designers have some powerful tools to assist in approximat-
ing optimal topologies for these more complex structures. 
Several of these tools include topology optimization using 
material distribution methods, such as the SIMP (Solid Iso-
tropic Material with Penalization) material model (Bend-
soe and Sigmund, 2002; Rozvany, Zhou and Birker, 1992), 
or discrete truss topology optimization methods based on 
ground structures (see Chapter 4 of Bendsoe and Sigmund, 
2002, or Chapter 5 of Christensen and Klarbring, 2009). A 
brief overview of these tools is given in the following section.

TOPOLOGY OPTIMIZATION APPROACHES

According to Bendsoe and Sigmund (2002), topology opti-
mization consists of studying the optimal arrangement of 
isotropic material in space for the design of the topology of a 
structure. A geometric representation of such a structure can 
be thought of as a black-and-white rendering of an image, 
in which the “pixels” are given by finite elements. This 
methodology essentially starts with a uniformly distributed 
“gray” material in which the optimal layout is determined 
through an iterative process to reveal a potentially optimal 
load path, represented by “black” and “white” densities. An 
example of this methodology can be seen in Figure 17 using 
the educational codes provided in Talischi and colleagues 
(2012a; 2012b) for the topology optimization of a 6:1 simple 
span problem with five sets of uniformly spaced point loads. 
One of the major advantages of this methodology is that the 
feasible solutions can have any size, shape or connectivity. 
For an example of the use of topology optimization in the 
design of steel bracing systems of high-rise buildings, refer 
to Stromberg and colleagues (2012).

An alternative approach based on ground structures con-
siders a form of gridlike continua for the topology optimi-
zation of trusses using discrete members; this can also be 
viewed as a sizing problem where the connectivity must be 
specified a priori. Within these techniques, there are liter-
ally thousands of interconnected truss elements that coalesce 
into patterns based on the final optimal cross-sectional areas 
that reveal optimal (minimal) load path structures. To gener-
ate such topologies using this approach, refer to the educa-
tional code provided in Sokol (2011); see Figure 18.

The interpretation of the results computed using either 
of these tools requires a significant amount of engineering 
judgment and an understanding of practical issues such as 
constructability and functionality of the truss. Using these 
solutions, a discrete truss, which provides the general con-
nectivity of the structure, can be interpreted. However, the 

Fig. 15. Minimal load path structures taken from Michell (1904): semi-infinite fan (left),  
orthogonal systems of equiangular spirals (center) and centrally loaded beam (right).
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determination of the precise location of the joints (nodes) can 
be quite subjective because it is often an “eyeball” estimate 
of the location. Therefore, after the connectivity is identi-
fied, the final “optimal” locations of the nodes might then 
be refined using various searching or gradient optimization 
techniques. One useful method that also gives great insight 
into the forces in the individual members is Graphic Statics.

GRAPHIC STATICS

Graphic Statics is a powerful tool for studying both the 
geometry and the forces in a structure using only graphical 
methods. It was once in wide usage, initially based on the 
work of Rankine and Maxwell and later adopted and refined 
by Culmann and Cremona. Graphic Statics has recently 
been revived in the design of compression-only masonry 
shells in the work of Block and Ochsendorf (2007).

Graphic Statics uses graphical techniques to determine 
the axial forces in certain common trusses geometries. It 
was originally done with simple drafting tools and can now 
be easily done with computer graphic programs or simple 
spreadsheets. It does not require the calculation of stiffness, 

only simple geometrical relationships. It produces two dia-
grams—one that represents the geometry of the truss and 
the other that represents the axial forces in the members of 
the truss. Maxwell determined that these two diagrams are 
reciprocal.

Cremona later modified this concept so that, for each line 
in the form diagram (truss geometry), there is a parallel line 
in the force diagram, the length of which is proportional to 
axial force in the original form line (truss member). Max-
well also determined that each node in the form diagram 
maps into a closed polygon in the force diagram, which rep-
resents the equilibrium of the forces at the node. Also, every 
polygon in the form diagram maps into a node in the force 
diagram. Because these two diagrams are reciprocal, the 
mapping can also be reversed. This means that the designer 
can manipulate the force diagram in order to determine the 
geometry that produces a desired set of forces.

As described by Baker and colleagues (2013), for a given 
connectivity of nodes, Graphic Statics provides all the infor-
mation needed to determine the total load path of the struc-
ture in the form and force diagrams; that is, using the form 
diagram, the member lengths can be found while the force 
diagram provides the corresponding member forces. Thus, 
all of the information is graphically available to determine 
the total load path.

To understand the mappings between the reciprocal dia-
grams, consider the simple six-panel gable truss (Zalewski 
and Allen, 1998) shown in Figure 19. On the left, the geom-
etry of the structure, or the form diagram, is shown. The 
lines in the form diagram represent structural members or, 
rather, lines of action of the structural members. The lines 
in the second diagram (on the right of Figure 19), known as 
the force diagram, represent forces carried by the members 
from the form diagram. In this figure, dashed line vectors 
are used to represent these external forces both in the form 
and force diagrams.

The notation used in Figure 19 and following diagrams 
is an interval notation based on a version of Bow’s notation 
(Bow, 1873). For the form diagram, the capital letters, A, 
B, C, … , are sequentially placed clockwise in the intervals 
between external forces (open polygons) and numbers, 1, 2, 
3, … , are placed in the internal spaces (closed polygons) 

Fig. 17. Topology optimization approach by  
distribution of isotropic material using the educational  

code, PolyTop (Talischi et al., 2012a; 2012b).
Fig. 18. Topology optimization approach using ground 

structures, computed by the educational code in Sokol (2011).

Fig. 16. Optimal discrete Michell truss.
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Fig. 19. Form and force diagrams for gable truss.

toward the joint in the form diagram, so member 3-2 is also 
in compression. For more details on reciprocal relationships, 
refer to Baker and colleagues (2013) and Zalewski and Allen 
(1998).

A useful application of Graphic Statics for structural 
design has also been described in Chapter 14 of the book 
by Zalewski and Allen (1998) for form-finding of trusses 
by graphically solving for the nodal locations that give a 
constant chord-force truss. For example, the gable truss of 
Figure 19 is revisited in Figure 20, in which the objective 
becomes to find the geometry of a truss in which the force 
in the top chord is constant. This can be accomplished by 
manipulating the force diagram so that the lengths of lines 
a-1, b-3, c-5, d-6, e-8 and f-10 are the same, representing 
equal forces. After the force diagram is modified to achieve 
the desired properties, work backward to find the reciprocal 
form diagram, resulting in the desired geometry. This has 
been applied in the design of the structure by Robert Mail-
lart shown in Figure 21. Note that the forces in members 2-3, 
4-5, 6-7 and 8-9 are zero because the nodes are overlaid in 
the force diagram on the right. These members were elimi-
nated from Maillart’s structure.

Similarly, to find the geometry of the truss in which there 
is a constant force in both the top and bottom chords, the 
force diagram can be modified accordingly so that all lines 
in the force diagram corresponding to the members in the 
chords have the same length. This example can be seen in 
Figure 22.

The authors note that the force polygon and form dia-
grams can be manipulated in this figure to achieve higher or 
lower forces and shallower or deeper trusses, depending on 
the needs of the designer. Also, members 2-3, 4-5, 6-7 and 
8-9 are all zero force members. They may still be required 
for considerations of stability or unbalanced loads, unless 
the chords have sufficient flexural strength and stiffness to 
address these issues.

As previously mentioned, an interpretation of topology 

between members. Each line in the form diagram is bor-
dered by two polygons. Thus, a member may be referred 
to using the corresponding letter or number of the adjacent 
polygons—for example, A-1 or 2-3—and a joint called with 
a series of letters and numbers—for example, A-B-3-2-1-A. 
Similarly, the external forces are referenced using the adja-
cent open polygons—for example, FAB. The open polygons 
denoted by capital letters in the form diagram correspond to 
points (nodes) on the load line of the force diagram, denoted 
by the lowercase letters, a, b, c, … . The numbers denoting 
the closed polygons in the form diagram also have corre-
sponding nodes in the force diagram.

This graphical methodology allows the user to determine 
the axial force in a truss member by measuring the length of 
the reciprocal line in the force diagram. The relative mag-
nitude of the force diagram is set by drawing the load line, 
which represents the external forces, to scale. For example, 
the force in member A-1 in the form diagram of Figure 18 is 
proportional to the length of the line between points a and 
1 in the corresponding force diagram. Similarly, the force 
in the member between polygons 2 and 3 is proportional to 
the length of the line between points 2 and 3 of the force 
diagram. The remaining forces in the other members can 
be computed likewise. It should be noted that nodes 1 and 2 
overlay each other in the force diagram; this indicates that 
member 1-2 has zero force (the same is true for member 
9-10). Thus, the forces acting on a node in the form diagram 
correspond to a polygon in the force diagram, where each 
force is a side of the polygon. For example, at node A-B-3-
2-1-A, the polygon of forces is given by points a-b-3-2-1-a. 
Reading clockwise around joint A-B-3-2-1-A in the form 
diagram, we can determine if members A-1 and 2-3 are in 
tension or compression. If read from 1 to a on polygon a-b-3-
2-1-a, we move from the lower left to the upper right, toward 
the joint A-B-3-2-1-A of the form diagram. Thus, member 
A-1 is in compression. Likewise, moving from 3 to 2 on the 
force polygon goes from the lower right to the upper left, or 
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Fig. 20. Constant force gable truss (force is constant in top chord).

Fig. 21. Design using form-finding of a constant-force gable truss (Zalewski and Allen, 1998).

Fig. 22. Truss designed for constant and equal force in top and bottom chord.
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optimization solutions from continuum or ground structure 
approaches provides approximate nodal locations and con-
nectivity. Refinement of the nodal locations can be achieved 
through manipulation of the force diagram in graphic statics.

Figures 17 and 18 show the results of a continuum topol-
ogy optimization by means of material distribution and 
ground structures, respectively. These results were then 
interpreted into general truss configurations, which give the 
general connectivity of nodes. To find a more precise loca-
tion of nodes, various optimization techniques can be used. 
One method is to manipulate the force diagram of a graphic 
statics analysis until a minimum total load path is achieved. 
The reason the force diagram is manipulated rather than the 
form diagram is because we can always be assured that the 
solution is in equilibrium because the force polygons will 
always close. It can also be noted that because the solution 
is automatically constrained to be in equilibrium, there are 
fewer independent variables than if we tried to manipulate 
the form diagram. The result of this exercise is shown as 
truss A in Table  2. These solutions provide benchmarks 
against which the other truss geometries in Table 2 can be 
compared. It is worth noting that the geometry has a substan-
tial influence on the potential efficiency of a truss, particu-
larly when the design is deflection controlled. The geometry 
of the discrete optimal truss (truss A) is not common but is 
extremely regular, with the tension members intersecting the 
compression members at consistent angles.

The structural volume comparisons in Table 2 are appro-
priate for situations in which the permissible tensile and 
compressive stresses are similar in magnitude. The Warren 
truss, the combined Warren/Pratt truss and the compres-
sion diagonal Pratt truss (trusses C, D and E, respectively) 
have relatively short load paths and are appropriate for 
heavy trusses with stocky web members. They also have the 
advantage of having compression connections for the web 
members with the largest forces. Compression connections 
are often more efficient than tension connections for large 
forces.

The ranking of the truss geometries would change if 
the permitted compressive stresses were sensitive to the 
unbraced lengths. Trusses A and B would still have rela-
tively low volumes because of the reduced unbraced lengths 
of the web members. To take full advantage of these geom-
etries, designers need to consider the stabilizing effects of 
the tension diagonals and the benefits of connection con-
tinuity when determining the capacity of the compression 
diagonals in trusses A and B. These effects greatly increase 
the in-plane and out-of-plane buckling strength of the com-
pression diagonals; the AISC direct analysis method is a 
good approach for capturing this benefit. Using this method, 

the effective length factor K can be set equal to 1.0 for all 
the members, and by considering a second-order numerical 
analysis with modified members’ stiffness, it is possible to 
capture the increased strength in the members.

The Pratt truss with tension diagonals (truss F) is often 
an appropriate geometry for trusses with slender members 
where the permitted compressive stresses are very sensi-
tive to unbraced length. In such situations, truss F may have 
less tonnage than the trusses with compression diagonals. 
Truss F also benefits from fewer connections than trusses A 
and B and may be easier to erect than trusses with compres-
sion diagonal at the support. When considering a geometry 
similar to truss F, the designer should understand that the 
truss has a fundamentally longer total load path; some of the 
savings in web members will be offset with additional forces 
in chords and web members, as well as increased deflec-
tions. These “hidden” penalties are often overlooked when 
the designer only studies the web members when determin-
ing the geometry of a truss.

CONCLUSIONS

Several years ago, the first author (Baker) heard a reference 
to Michell trusses while attending an overseas conference. 
An attempt to learn more about the subject prompted the 
purchase of an out-of-print book that included Michell’s 
1904 paper. The work was both illuminating and thought-
provoking. Exploration of Michell’s work led the authors 
to Maxwell. Unfortunately, while Maxwell produced an 
immense body of work, much of it is unrelated to struc-
tural engineering. Seeking a guide to Maxwell, the authors 
turned to the History of Strength of Materials by Timosh-
enko (1953). This inquiry into Maxwell ultimately led the 
authors to Rankine, Cremona and a reexamination of Airy. 
Amazingly, several of their important ideas are no longer 
common currency (or may have never been widely known). 
The search for lost ideas continues.

Maxwell’s load path theorem is simple and powerful. 
Inefficiencies must be paid for twice—once in tension and 
once in compression. Minimize one and the other is also 
minimized. Michell trusses provide benchmarks for least 
load path solutions. Discrete Michell trusses are amazingly 
regular and ordered; their shapes both surprising and infor-
mative. While Graphic Statics has been replaced by the com-
puter as an analysis tool, it remains a powerful design tool. 
Modern topology optimization tools make finding efficient 
layouts for complex problems accessible to the designer. The 
authors have found that these ideas and tools greatly aid in 
the conceptual design of trusses and other structures.

The working title for this paper was “things I wish I had 
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Table 2. Relative Efficiency of Various Trusses Compared to Minimum Load Path Structures

Discretized Solution

Volume Ratio 
for Constant 

Stress

Deflection 
for Constant 

Stress

Volume Ratio 
for Equal 

Deflection

 
Ground structures solution

 100%  100%  100%

 
Truss A: Discretized optimal truss

 102.6%  102.6%  105.3%

 
Truss B: Lattice truss

 111.6%  111.6%  124.7%

 
Truss C: Warren truss

 111.6%  111.6%  124.7%

 
Truss D: Combined Warren/Pratt truss

 113.7%  113.7%  129.2%

  
Truss E: Compression diagonal Pratt truss

 119.7%  119.7%  143.3%

 
Truss F: Tension diagonal Pratt truss

 129.8%  129.8%  168.4%
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known when I started designing structures.” None of the 
preceding theorems, tools or techniques was included in the 
authors’ engineering education, but all are useful in develop-
ing an efficient structural design. Quite simply, the potential 
efficiencies or inefficiencies of a design are determined by 
the structural geometry. No amount of optimizing the size 
of individual members will compensate for a bad structural 
layout. The authors hope that the paper makes this infor-
mation available to today’s structural engineering educators 
and practicing structural engineers so that they can create 
efficient designs that conserve our resources and reduce the 
carbon footprint of our construction.
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