5 Columns

- Combined
- Solid
- Glulam
- Built-up
- Spaced

Slide 1 of 33

1 - Combined Dimensioned Lumber

Required:

- Capacity

1. Calculate slenderness ratio I_{e} / d largest ratio governs. Must be < 50
2. Find adjustment factors $C_{D} C_{M} C_{t} C_{F} C_{i}$
3. Calculate C_{P}
4. Determine F'c by multiplying the tabulated Fc by all the above factors
5. Set the actual stress = allowable $\mathrm{F}^{\prime} \mathrm{c}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $P=F \prime c A$

1 - Combined Dimensioned Lumber

Required:

- Capacity for roof LL

1. Calculate slenderness ratio I_{e} / d largest ratio governs. Must be < 50

$$
l_{e}=6^{\prime}=72^{\prime \prime}
$$

SLENDERNESS Y-Y

$$
\frac{l_{e}}{d}=\frac{72^{\circ}}{1.5^{\prime \prime}}=40^{\circ}
$$

2. Find adjustment factors $\left(\mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{i}}=0\right)$

$$
\begin{aligned}
C_{D} C_{M} C_{t} C_{F} & C_{i} \\
C_{D} & \left.=1.25 \text { (FOR } L_{r}\right) \\
C_{F} & \left.=1.05 \text { (FOR } F_{C}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H E M-F I R N^{\circ} 2 \\
& 2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime} \\
& A=10.88 氵^{2}(E A A) \\
& F_{C}=1300 \mathrm{PSl} \\
& E_{\text {MIN }}=47000 \mathrm{ps} 1 \\
& l=6^{\prime} \quad K_{e}=1.0
\end{aligned}
$$

1 - Combined Dimensioned Lumber

3. Calculate C_{P}
C_{p} :

$$
\begin{aligned}
& F_{C_{E}}=\frac{0.822 E_{\min }^{\prime}}{\left(l_{2} / d\right)^{2}}=\frac{0.822(470000)}{4 g^{2}}=167.7 \mathrm{ps} \\
& F_{c}^{*}=1706 \mathrm{ps} \\
& C_{c}=0.8 \\
& C_{p}=0.0962
\end{aligned}
$$

4. Determine F'c by multiplying the tabulated Rc by all the determining factors

$$
F_{C}^{\prime}=1300\left(\begin{array}{ccc}
C_{0} & C_{F} & C_{p} \\
1.25 & 1.05 & 0.0962
\end{array}\right)=164.2 \text { psi }
$$

5. Set the actual stress = allowable $\mathrm{F}^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $\mathrm{P}=\mathrm{F}$ 'c A

$$
P_{M A X}=F_{c}^{\prime} A=164(10.88 \times 2)=3571 \mathrm{LBS}
$$

HEM -FIR No 2
$2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime}$
$A=10.88 \mathrm{in}^{2}$ (EACH)
$F_{c}=1300 \mathrm{psl}$
$E_{\text {MIN }}=470000 \mathrm{psi}$
$\rho=6^{\prime} \quad K_{e}=1.0$

2 - Solid Dimensioned Lumber

Required:

- Capacity

1. Calculate slenderness ratio l_{e} / d largest ratio governs. Must be < 50
2. Find adjustment factors

$$
C_{D} C_{M} C_{t} C_{F} C_{i}
$$

3. Calculate C_{P}
4. Determine F'c by multiplying the tabulated Fc by all the above factors
5. Set the actual stress $=$ allowable $F^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $\mathrm{P}=\mathrm{F}$ 'c A

2 - Solid Dimensioned Lumber

Required:

- Capacity for roof LL

1. Calculate slenderness ratio $\mathrm{l}_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be < 50

$$
\begin{aligned}
& l_{e}=6^{\prime}=72^{\prime \prime} \\
& \text { SLENDERNESS Y-Y } \\
& \frac{l_{e}}{d}=\frac{72^{\prime \prime}}{3.5^{\prime \prime}}=20.6
\end{aligned}
$$

2. Find adjustment factors $\left(\mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{i}}=0\right)$ $C_{D} C_{M} C_{t} C_{F}$

$$
\begin{aligned}
& C_{D}=1.25\left(\text { FOR } L_{r}\right) \\
& C_{F}=1.05\left(\text { FOR } F_{C}\right)
\end{aligned}
$$

HEM - FIR N ${ }^{\circ} 2$
$3.5^{\prime \prime} \times 7.25^{\prime \prime}$
$A=25.38 \mathrm{~m}^{2}$
$F_{c}=1300 \mathrm{Ps} 1$
$E_{M_{1, N}}=470000 \mathrm{psi}$
$\rho=6^{\prime} \quad K_{e}=1.0$

2 - Solid Dimensioned Lumber
3. Calculate C_{P}

$$
\begin{aligned}
& F_{C_{E}}=\frac{0.822(470000)}{20.6^{2}}=912.9 \mathrm{psl} \\
& F_{C}^{*}=1300(1.25 \quad 1.05)=1706 \mathrm{Ps} 1 \\
& C=0.8 \\
& C_{p}=0.457
\end{aligned}
$$

4. Determine F'c by multiplying the tabulated Fc by all the determining factors

$$
F_{C}^{\prime}=1300\left(\begin{array}{ccc}
C_{D} & C_{F} & C_{p} \\
1.25 & 1.05 & 0.457
\end{array}\right)=781 \mathrm{PSI}
$$

5. Set the actual stress = allowable $F^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $\mathrm{P}=\mathrm{F}$ 'c A

$$
P_{\text {max }}=F_{c}^{\prime} A=781(25.38)=19819 \text { LBS }
$$

3 - Glulam Column

Brock Commons building, a student residence built for the University of British Columbia in Vancouver, Canada (2016)

18-story hybrid mass timber building 2 concrete floors at the base and 16 wood structure floors

3 - Glulam Column

Required:

- Capacity

1. Calculate slenderness ratio $\mathrm{l}_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be < 50
2. Find adjustment factors

$$
\mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{t}} \mathrm{C}_{\mathrm{i}}\left(\mathrm{No} \mathrm{C}_{\mathrm{V}}\right)
$$

3. Calculate $\mathrm{C}_{\mathrm{P}}(\mathrm{c}=0.9)$
4. Determine F'c by multiplying the tabulated Fc by all the above factors
5. Set the actual stress $=$ allowable $F^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $\mathrm{P}=\mathrm{F}$ 'c A

3 - Glulam Column

Required:

- Capacity for roof LL

$$
\begin{aligned}
& H F L 2 \\
& 3.5^{\prime \prime} \times 7.5^{\prime \prime} \\
& A=26.25 \mathrm{~m}^{2} \\
& E=1350 \mathrm{PS1} \\
& E_{\text {miN }}=740000 \mathrm{PS1} \\
& l=6^{1} \quad K_{e}=1.0
\end{aligned}
$$

1. Calculate slenderness ratio $\mathrm{I}_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be < 50

$$
\begin{aligned}
& l_{e}=6^{\prime}=72^{\prime \prime} \\
& \text { SLENDERNESS Y-Y } \\
& \frac{l_{e}}{d}=\frac{72}{3.5}=20.57
\end{aligned}
$$

3 - Glulam Column HF - L2 5 lams

Table 5B Reference Design Values for Structural Glued Laminated Softwood Timber
(Members stressed primarily in axial tension or compression) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

1. For members with 2 or 3 laminations, the reference shear design value for transverse loads parallel to the wide faces of the laminations, F_{w}, shall be reduced by multiplying by a factor of 0.84 or 0.95 , respectively, 2. The reference shear design value for transverse loads applied parallel to the wide faces of the laminations, F_{w}, shall be multiplied by 0.4 for members with 5,7 , or 9 laminations manuaccured fion multple piece laminations (across width) that are not edge bonded. The reference shear design value, F_{w}, shall be multiplied by 0.5 for all other members manufactured from multiple piece laminations with unbonded edge joints. This reduction shall be cumulative with the adjustments in footnotes 1 and 3 .
2. The reference design values for shear, F_{w} and $\mathrm{F}_{w \text {, }}$, hall be multiplied by the shear reduction factor, C_{w} for the conditions defined in NDS 5.3.10.
3. For members greater than 15 in. deep, the reference bending design value, $\mathrm{F}_{\mathrm{w},}$, shall be reduced by multiplying by a factor of 0.88 .
be reduced by 100000 , be reduced by
4. Notations: $\mathrm{E}_{\text {wal }}=$ Axial moduli of elasticity for use in axial deformation calculation for compression and tension members as def 5A Extended when layups are used as beams)
$0.95 \mathrm{E}_{\text {wita }}=$ Apparent moduli of elasticity in either the X-X or Y - Y direction for use in beam deflection calculations when layups are used as beams.
$\mathrm{E}_{\text {wath min }}=$ Minimum axial moduli of elasticity for use in column stability calculations.

3 - Glulam Column

Required:

- Capacity for roof LL

$$
\begin{aligned}
& H F L 2 \\
& 3.5^{\prime \prime} \times 7.5^{\prime \prime} \\
& A=26.25 \mathrm{~m}^{2} \\
& \mathbb{C}_{C}=1350 \mathrm{PS} 1 \\
& E_{\text {min }}=740000 \mathrm{TS} \\
& l=6^{1} \quad K_{e}=1.0
\end{aligned}
$$

2. Find adjustment factors $C_{D} C_{M} C_{t}$
$C_{D}=1.25$ (FoR L_{r})
(NO CV FOR F_{C})
$C_{M}=C_{t}=1$

Table 5.3.1 Applicability of Adjustment Factors for Structural Glued Laminated Timber

	ASD only	ASD and LRFD										$\begin{gathered} \text { LRFD } \\ \text { only } \end{gathered}$		
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}} \quad \mathrm{x}$	$\mathrm{C}_{\text {D }}$	C_{M}	$\mathrm{C}_{\text {t }}$	C_{L}	C_{V}	C_{fu}	C_{c}	$\mathrm{C}_{\text {I }}$	-	-	-	2.54	0.85	λ
$\mathrm{F}_{\mathrm{t}}^{\prime}=\mathrm{F}_{\mathrm{t}} \quad \mathrm{x}$	C_{D}	C_{M}	C_{t}	-	-	-	-	-	-	-	-	2.70	0.80	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}} \quad \mathrm{x}$	C_{D}	C_{M}	C_{t}	-	-	-	-	-	C_{vr}	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{rt}}{ }^{\prime}=\mathrm{F}_{\mathrm{rt}} \quad \mathrm{x}$	$C_{\text {d }}$	CM^{2}	$\mathrm{C}_{\mathrm{t}}{ }^{2}$	-	-	-	-	-	-	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}} \quad \mathrm{X}$	C_{D}	C_{M}	C_{1}	-	-	-	-	-	-	$\mathrm{C}_{\text {P }}$	-	2.40	0.90	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp} \mathrm{x}$	-	C_{M}	C_{1}	-	-	-	-	-	-	-	C_{b}	1.67	0.90	
$\mathrm{E}^{\prime}=\mathrm{E} \quad \mathrm{x}$	-	C_{M}	C_{t}	-	-	-	-	-	-	-	-	-	-	
$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }} \mathrm{x}$	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	-	-	-	-	-	1.76	0.85	-

3 - Glulam Column

3. Calculate C_{P}

$$
\begin{aligned}
& F_{C E}=\frac{0.822(740000)}{20.57^{2}}=1437 \mathrm{psi} \\
& F_{c}^{*}=1350(1.25)=1687 \mathrm{PS1} \\
& c=0.9\left(C_{1} \text { LUCAN }\right) \\
& C_{p}=0.694
\end{aligned}
$$

4. Determine F'c by multiplying the tabulated Pc by all the determining factors

$$
F_{c}^{\prime}=1350\left(\begin{array}{cc}
C_{0} & C_{p} \\
1.25 & 0.694
\end{array}\right)=1171 \mathrm{psl}
$$

5. Set the actual stress = allowable $F^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $\mathrm{P}=\mathrm{F}$ 'c A

$$
P_{\text {max }}=F_{c}^{\prime} A=1171(26.25)=30742 \text { LBs }
$$

4 - Built-Up Column

15.3 Built-Up Columns

15.3.1 General

The following provisions apply to nailed or bolted built-up columns with 2 to 5 lamination in which:
(a) each lamination has a rectangular cross section and is at least $1-1 / 2^{\prime \prime}$ thick, $t \geq 1-1 / 2^{\prime \prime}$.
(b) all lamination have the same depth (face width), d.
(c) faces of adjacent lamination are in contact.
(d) all laminations are full column length.
(e) the connection requirements in 15.3.3 or 15.3.4 are met.
Nailed or bolted built-up columns not meeting the preceding limitations shall have individual lamination designed in accordance with 3.6 .3 and 3.7. Where individual laminations are of different species, grades, or thicknesses, the lesser adjusted compression parallel to grain design value, $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$, and modulus of elasticity for beam and column stability, $\mathrm{E}_{\text {min }}{ }^{\prime}$, for the weakest tamination shall apply.

$$
\begin{aligned}
& H F L 2 \\
& 3.5^{\prime \prime} \times 7.5^{\prime \prime} \\
& A=26.25^{2} \mathrm{~m}^{2} \\
& F_{C}=1350 \mathrm{PS1} \\
& E_{\text {MIN }}=740000 \mathrm{Ps} \\
& \rho=6^{\prime} \quad \mathrm{Ke}=1.0
\end{aligned}
$$

4 - Built-Up Column

4 - Built-Up Column

Required:

- Capacity

1. Calculate slenderness ratio I_{e} / d largest ratio governs. Must be < 50 If the slenderness across the lams $\left(\mathrm{I}_{2} / \mathrm{d}_{2}\right)$ controls then use K_{f} with C_{p}
2. Find adjustment factors
$C_{D} C_{M} C_{t} C_{F}$
3. Calculate C_{P}. If controlling slenderness is I_{2} / d_{2}, use K_{f}
4. Determine F'c by multiplying the tabulated Fc by all the above factors. F'c need not be smaller than case 1 above (individual unfastened lams)

5. Set the actual stress = allowable $\mathrm{F}^{\prime} \mathrm{c}=\mathrm{P} / \mathrm{A}$
6. Solve for capacity, $P=F$ 'c A

Nailing criteria 15.3.3

Figure 15C Typical Nailing Schedules for Built-Up Columns

University of Michigan, TCAUP

15.3.3 Nailed Built-Up Columns

15.3.3.1 The provisions in 15.3 .1 and 15.3 .2 apply to nailed built-up columns (see Figure 15C) in which:
(a) adjacent nails are driven from opposite sides of the column
(b) all nails penetrate all laminations and at least $3 / 4$ of the thickness of the outermost lamination
(c) $15 \mathrm{D} \leq$ end distance $\leq 18 \mathrm{D}$
(d) $20 \mathrm{D} \leq$ spacing between adjacent nails in a row $\leq 6 \mathrm{t}_{\text {min }}$
(e) $10 \mathrm{D} \leq$ spacing between rows of nails $\leq 20 \mathrm{D}$
(f) $5 \mathrm{D} \leq$ edge distance $\leq 20 \mathrm{D}$
(g) 2 or more longitudinal rows of nails are provided where $\mathrm{d}>3 \mathrm{t}_{\text {min }}$

where:

D = nail diameter
$\mathrm{d}=$ depth (face width) of individual lamination
$\mathrm{t}_{\text {min }}=$ thickness of thinnest lamination
Where only one longitudinal row of nails is required, adjacent nails shall be staggered (see Figure 15C). Where three or more longitudinal rows of nails are used, nails in adjacent rows shall be staggered.

Arch 544

,

4 - Built-Up Column Nailing criteria

Figure 5. Fastener Schedule for Built-Up Columns Fastened with Strong-Drive ${ }^{\circledR}$ SDW Truss-Ply Screws.

4 - Built-Up Column

Required:

- Capacity for roof LL

1. Calculate slenderness ratio $\mathrm{I}_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be < 50

$$
\begin{aligned}
& l_{e}=6^{\prime}=72^{\prime \prime} \\
& \text { SLENDERNESS Y-Y } \\
& \frac{l_{e}}{d_{2}}=\frac{72^{\prime \prime}}{3^{\prime \prime}}=24
\end{aligned}
$$

2. Find adjustment factors $\left(\mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{i}}=0\right)$

$$
\begin{aligned}
C_{D} C_{M} C_{t} C_{F} & C_{i} \\
C_{D} & \left.=1.25 \text { (For } L_{r}\right) \\
C_{F} & \left.=1.05 \text { (For } F_{C}\right)
\end{aligned}
$$

HEM-FIR $N^{\circ} 2$
$2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime}$
$A=10.88 \mathrm{in}^{2}(E A C U)$
$F_{c}=1300 \mathrm{psl}$
$E_{\text {min }}=470000 \mathrm{ps} 1$
$l=6^{\prime} \quad K_{e}=1.0$

4 - Built-Up Column

3. Calculate C_{P}

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}=\mathrm{K}_{\mathrm{f}}\left\lfloor\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{oE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{oE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}}\right\rfloor \tag{15.3-1}
\end{equation*}
$$

where:
$\mathrm{F}_{\mathrm{c}}{ }^{*}=$ reference compression design value parallel
to grain multiplied by all applicable modifica-
sion factors except C_{p} (see 2.3)
$F_{C E}=\frac{0.822 E_{\text {min }}^{\prime}}{\left(\ell_{e} / d\right)^{2}}$
$\mathrm{~K}_{\mathrm{f}}=0.6$ for built-up columns where $\ell_{\mathrm{e} 2} / \mathrm{d}_{2}$ is used
to calculate F_{CE} and the built-up columns are
nailed in accordance with 15.3.3
$\mathrm{K}_{\mathrm{f}}=0.75$ for built-up columns where $\boldsymbol{\ell}_{\mathrm{e} 2} / \mathrm{d}_{2}$ is
used to calculate F_{CE} and the built-up col-
urns are bolted in accordance with 15.3.4
$K_{f}=1.0$ for built-up columns where $\ell_{\mathrm{e} 1} / \mathrm{d}_{1}$ is used
to calculate F_{CE} and the built-up columns are
either nailed or bolted in accordance with
15.3 .3 or 15.3.4, respectively
c $=0.8$ for sown lumber
c $=0.9$ for structural glued laminated timber or
structural composite lumber

$$
\begin{aligned}
& \text { HEM-FR } N^{0} 2 \\
& 2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime} \\
& A=10.88 \mathrm{in}^{2}(E A C H) \\
& F_{C}=1300 \mathrm{PSL} \\
& E_{\text {MIN }}=470000 \mathrm{PSI} \\
& l=6^{\prime} \quad \mathrm{Ke}=1.0
\end{aligned}
$$

4 - Built-Up Column

3. Calculate C_{P}
C_{p}
$K_{f}=0,6$
$P_{C E}=\frac{0.822(470000)}{24^{2}}=670.7 \mathrm{PSI}$
$F_{c}^{*}=1300(1.25 \quad 1.05)=1706 \mathrm{ps}$
$\frac{F_{C E}}{F_{C}^{*}}=0.39$
$C=0.8$ (SAN LUMBER)
$C_{p}=0.6\left[\frac{1+0.39}{2(0.8)}-7 /\left(\frac{1+0.39}{2(0.8)}\right)^{2}-\frac{0.39}{0.8}\right]$
$C_{p}=0.2125$

4 - Built-Up Column
4. Determine F'c by multiplying the tabulated Rc by all the determining factors

$$
F_{C}^{\prime}=1300\left(\begin{array}{ccc}
C_{D} & C_{F} & C_{p} \\
1.25 & 1.05 & 0.212
\end{array}\right)=362.6 \mathrm{ps1}
$$

4. Set the actual stress = allowable $\mathrm{F}^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
5. Solve for capacity, P = F'c A

$$
P_{\text {max }}=F_{c}^{\prime} A=362.6(21.75)=7888 \text { LBS }
$$

HEM -FIR No 2
$2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime}$
$A=10.88$ in $^{2}(E A C U)$
$F_{c}=1300 \mathrm{psl}$
$E_{\text {min }}=470000 \mathrm{psi}$
$\rho=6^{\prime} \quad K_{e}=1.0$

Nailing requirements for 22×8 's

(a) adjacent nails are driven from opposite sides of the column
(b) all nails penetrate all laminations and at least $3 / 4$ of the thickness of the outermost lamination
b) $3 / 4\left(1.5^{\prime \prime}\right)=1.125^{\prime \prime}$

MIN. NSIL LENLTH $=1.5^{\prime \prime}+1.125^{\prime \prime}=2.625^{\prime \prime}$ USE lod CONAMON $L=3^{\prime \prime} \quad D=0.148^{\prime \prime}$

Table L4 Standard Common, Box, and Sinker Steel Wire Nails ${ }^{\mathbf{1}, \mathbf{2}}$

Common or Box

Sinker

Type		Pennyweight										
		6d	7d	8d	10d	12d	16d	20d	30d	40d	50d	60d
Common	L	2	2-1/4	2-1/2	3	3-1/4	3-1/2	4	4-1/2	5	5-1/2	6
	D	0.113	0.113	0.131	0.148	0.148	0.162	0.192	0.207	0.225	0.244	0.263
	H	0.266	0.266	0.281	0.312	0.312	0.344	0.406	0.438	0.469	0.5	0.531
Box	L	2	2-1/4	2-1/2	3	3-1/4	3-1/2	4	4-1/2	5		
	D	0.099	0.099	0.113	0.128	0.128	0.135	0.148	0.148	0.162		
	H	0.266	0.266	0.297	0.312	0.312	0.344	0.375	0.375	0.406		
Sinker	L	1-7/8	2-1/8	2-3/8	2-7/8	3-1/8	3-1/4	3-3/4	4-1/4	4-3/4		5-3/4
	D	0.092	0.099	0.113	0.12	0.135	0.148	0.177	0.192	0.207		0.244
	H	0.234	0.250	0.266	0.281	0.312	0.344	0.375	0.406	0.438		0.5

1. Tolerances are specified in ASTM F1667. Typical shape of common, box, and sinker steel wire nails shown. See ASTM F 1667 for other nail types.
2. It is permitted to assume the length of the tapered tip is 2D.

4 - Built-Up Column

Nailing requirements for 2 2x8's

(a) adjacent nails are driven from opposite sides of the column
(b) all nails penetrate all laminations and at least 3/4 of the thickness of the outermost lamination
(c) $15 \mathrm{D} \leq$ end distance $\leq 18 \mathrm{D}$
(d) $20 \mathrm{D} \leq$ spacing between adjacent nails in a row $\leq 6 \mathrm{t}_{\text {min }}$
(e) $10 \mathrm{D} \leq$ spacing between rows of nails $\leq 20 \mathrm{D}$
(f) $5 \mathrm{D} \leq$ edge distance $\leq 20 \mathrm{D}$
(g) 2 or more longitudinal rows of nails are provided where $\mathrm{d}>3 \mathrm{t}_{\text {min }}$
b) $3 / 4\left(1.5^{\prime \prime}\right)=1.125^{\prime \prime}$

MIN. NSIL LENCTH $=1.5^{\prime \prime}+1.125^{\prime \prime}=2.625^{\prime \prime}$
USE 10 d COMMON $L=3^{\prime \prime} \quad D=0.148^{\prime \prime}$
C) $150=2.22^{\prime \prime} 180=2.664^{\prime \prime}$

USE END DISTANCE $=2.5^{\prime \prime}$
d) $2 O D=2.960^{\prime \prime} 6 t_{\text {min }}=6(1.5)=9^{\prime \prime}$

Row seacinc -USE: :"

e) $10 D=1.48^{\prime \prime} 20 D=2.96^{\prime \prime}$

DISTANCE BETUREN NALLS
UST $2.25^{\prime \prime}$
f) $50=0.76^{\prime \prime} 20 D=2.96^{\prime \prime}$

ERLE DISTANCE - USE $2.5^{\prime \prime}$
g) $3 t_{\text {min }}=3(1.5)=4.5^{\prime \prime}<7.25^{\prime \prime}$
$\therefore 2$ LONGITUPINAL ROWS

Bolted Provisions

15.3.4 Bolted Built-Up Columns

15.3.4.1 The provisions in 15.3.1 and 15.3.2 apply to bolted built-up columns in which:
(a) a metal plate or washer is provided between the wood and the bolt head, and between the wood and the nut
(b) nuts are tightened to insure that faces of adjacent laminations are in contact
(c) for softwoods: 7D \leq end distance $\leq 8.4 \mathrm{D}$ for hardwoods: $5 \mathrm{D} \leq$ end distance $\leq 6 \mathrm{D}$
(d) 4D \leq spacing between adjacent bolts in a row $\leq 6 t_{\text {min }}$
(e) $1.5 \mathrm{D} \leq$ spacing between rows of bolts $\leq 10 \mathrm{D}$
(f) $1.5 \mathrm{D} \leq$ edge distance $\leq 10 \mathrm{D}$
(g) 2 or more longitudinal rows of bolts are provided where $\mathrm{d}>3 \mathrm{t}_{\text {min }}$
where:

$$
\begin{aligned}
D & =\text { bolt diameter } \\
d & =\text { depth (face width) of individual lamination } \\
t_{\text {min }} & =\text { thickness of thinnest lamination }
\end{aligned}
$$

4 - Built-Up Column

Bolted Provisions

15.3.4 Bolted Built-Up Columns

15.3.4.1 The provisions in 15.3.1 and 15.3.2 apply to bolted built-up columns in which:
(a) a metal plate or washer is provided between the wood and the bolt head, and between the wood and the nut
(b) nuts are tightened to insure that faces of adjacent laminations are in contact
(c) for softwoods: $7 \mathrm{D} \leq$ end distance $\leq 8.4 \mathrm{D}$ for hardwoods: $5 \mathrm{D} \leq$ end distance $\leq 6 \mathrm{D}$
(d) 4D \leq spacing between adjacent bolts in a row $\leq 6 \mathrm{t}_{\text {min }}$
(e) $1.5 \mathrm{D} \leq$ spacing between rows of bolts $\leq 10 \mathrm{D}$
(f) $1.5 \mathrm{D} \leq$ edge distance $\leq 10 \mathrm{D}$
(g) 2 or more longitudinal rows of bolts are provided where $\mathrm{d}>3 \mathrm{t}_{\text {min }}$
where:

$$
\begin{aligned}
D & =\text { bolt diameter } \\
d & =\text { depth (face width) of individual lamination } \\
t_{\text {min }} & =\text { thickness of thinnest lamination }
\end{aligned}
$$

Four 2" $\times 8^{\prime \prime}$ laminations (softwoods) with two rows of $1 / 2^{\prime \prime}$ diameter bolts.

Typical shear plate connection in end block of spaced column

5 - Spaced Column

Required:

- Capacity

Typical shear plate connection in end block of spaced column

1. Determine end fixity condition "a" or "b"
2. Calculate slenderness ratios:
3. $\mathrm{I}_{1} / \mathrm{d}_{1}<80$
$\mathrm{I}_{2} / \mathrm{d}_{2}<50$
$\mathrm{I}_{3} / \mathrm{d}_{1}<40$
4. Find adjustment factors
$C_{D} C_{M} C_{t} C_{F} C_{i}$

5. Calculate C_{p}. $K x$ is based on end condition "a" or "b"
6. Determine F'c by multiplying the tabulated Fc by all the above factors.
7. Set the actual stress $=$ allowable $F^{\prime} \mathrm{C}=\mathrm{P} / \mathrm{A}$
8. Solve for capacity, $\mathrm{P}=\mathrm{F}$ 'c A

Condition "a": end distance $\leq \boldsymbol{\ell}_{1} / 20$
ℓ_{1} and $\ell_{2}=$ distances between points of lateral support in planes 1 and 2 , measured from center to center of lateral supports for continuous spaced columns, and measured from end to end for simple spaced columns, inches.
$\ell_{3}=$ Distance from center of spacer block to centroid of the group of split ring or shear plate connectors in end blocks, inches.
d_{1} and $\mathrm{d}_{2}=$ cross-sectional dimensions of individual rectangular compression members in planes of lateral support, inches.
Condition "b": $\ell_{1} / 20<$ end distance $\leq \ell_{1} / 10$

5 - Spaced Column

Required:

- Capacity for roof LL

1. Assuming end condition "b" $72 / 10=7.2^{\prime \prime}$

HEN-FIR $\mathrm{N}^{\mathrm{O}} 2$
$2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime}$
$A=10.88 \mathrm{in}^{2}$ (EACH)
$F_{c}=1300 \mathrm{psl}$
$E_{\text {min }}=470000 \mathrm{ps} 1$
$l=6^{\prime} \quad K_{e}=1.0$

$$
\frac{l_{1}}{20}=\frac{72}{20}=3.6^{\prime \prime}
$$

$$
h_{1} / d_{1}=72 / 1.5^{\prime \prime}=40<80
$$

$$
\frac{l_{1}}{10}=\frac{72}{10}=7.2^{4}
$$

Condition "a": end distance $\leq \ell_{1} / 20$
ℓ_{1} and $\ell_{2}=$ distances between points of lateral support in planes 1 and 2 , measured from center to center of lateral supports for continuous spaced columns, and measured from end to end for simple spaced columns, inches.
$\ell_{3}=$ Distance from center of spacer block to centroid of the group of split ring or shear plate connectors in end blocks, inches.
d_{1} and $\mathrm{d}_{2}=$ cross-sectional dimensions of individual rectangular compression members in planes of lateral support, inches.
Condition "b": $\ell_{1} / 20<$ end distance $\leq \ell_{1} / 10$

5 - Spaced Column

4. Calculate C_{P}
$K_{x}=3.0$ (Condition " $6^{\prime \prime}$)
$c=0.8$
$F_{c}^{*}=1300(1.25 \quad 1.05)=1706 \mathrm{ps1}$

$$
\mathrm{F}_{\mathrm{CE}}=\frac{0.822 \mathrm{~K}_{\mathrm{x}} \mathrm{E}_{\text {min }}^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}
$$

$K_{x}=2.5$ for fixity condition "a"
$=3.0$ for fixity condition "b"

HEM-FIR NO^{O}
$2 \times 1.5^{\prime \prime} \times 7.25^{\prime \prime}$
$A=10.88 \mathrm{in}^{2}$ (EACH)
$F_{c}=1300 \mathrm{psl}$
$E_{\text {min }}=470000 \mathrm{ps} 1$
$l=6^{\prime} \quad K_{e}=1.0$
$E_{C E}=\frac{0.822 K_{x} E_{\text {min }^{\prime}}}{\left(\mathrm{le}_{\mathrm{c}} / d\right)^{2}}=\frac{0.822(3.0)(470000)}{(48)^{2}}=503_{p s 1}$
$F_{C E / F_{C}^{*}}=\frac{503 / 1706}{}=0.29$

$$
\begin{aligned}
& \frac{l_{1}}{20}=\frac{72}{20}=3.6^{\prime \prime} \\
& \frac{l_{1}}{10}=\frac{72}{10}=7.2^{4 \prime}
\end{aligned}
$$

$c_{p}=0.274$
5. Determine F'c by multiplying the tabulated Kc by all the determining factors

$$
F_{C}^{\prime}=1300\left(\begin{array}{ccc}
C_{0} & C_{F} & C_{p} \\
1.25 & 1.05 & 0.274
\end{array}\right)=467.7 \mathrm{ps}
$$

6. Set the actual stress $=$ allowable $\mathrm{F}^{\prime} \mathrm{c}=\mathrm{P} / \mathrm{A}$
7. Solve for capacity, $P=F^{\prime} c A$

$P_{\text {max }}=F_{c}^{\prime} A=467.7(21.75)=10173 \mathrm{LB}$

3.5 k

19.8k

30.7k

7.8k
spaced

10.1k

Built-Up Column capacity example

$3 \times 2 \times 6$ (1.5×5.5) S-P-F No. 2
$\mathrm{Fc}=1150 \mathrm{psi}$
Emin $=510000$ psi
height $=10 \mathrm{ft} \mathrm{Ke}=1.0$
C_{D} (snow) $=1.15$
$C_{F}=1.1$

Built-Up Column capacity example

$3 \times 2 \times 6$ (1.5×5.5) S-P-F No. 2
$\mathrm{Fc}=1150 \mathrm{psi}$
Amin $=510000$ psi
height $=10 \mathrm{ft} \mathrm{Ke}=1.0$
C_{D} (snow) $=1.15$
$C_{F}=1.1$
$C_{p}:$
$F_{C E}=\frac{0.822(510000)}{26.67^{2}}=589.5 \mathrm{psi}$
$F_{c}^{*}=1150(1.151 .10)=1454.7 \mathrm{ps1}$
$F_{C E} / F_{C}^{*}=\frac{589.5}{1454.7}=0.405$
$c=0.8$
$K_{f}=0.6$ (NAMED)

$c_{p}=0.6\left[\frac{1+0.405}{2(0.8)}-\sqrt{\left(\frac{(1+0.405}{2(0.8)}\right)^{2}-\frac{0.405}{0.8}}\right]$
$C_{P}=0.218$
$F_{C}^{\prime}=1150(1.15 \quad 1.100 .218)=317.4 \mathrm{psi}$
$P_{\text {max }}=F_{C}^{\prime} A=317.4(24.75)=7856$
TAB, AREA $=18^{\prime} \times 6^{\prime}=108 \mathrm{SF}$
TOTAL LOAD CNIEACITY $=7856 / 10 \%=72.7 \mathrm{PSF}$

