

1 - Combined Dimensioned Lumber

Required:

- Capacity
- 1. Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50
- 2. Find adjustment factors $C_D C_M C_t C_F C_i$
- 3. Calculate C_P
- 4. Determine F'c by multiplying the tabulated Fc by all the above factors
- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

1 - Combined Dimensioned Lumber

Required:

Capacity for roof LL

1. Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50

$$le = G' = 72''$$

SLENDERNESS Y-Y
$$\frac{le}{d} = \frac{72'}{1.5''} = 48$$

2. Find adjustment factors $(C_M = C_t = C_i = 0)$ $C_D C_M C_t C_F C_i$

University of Michigan, TCAUP

Arch 544

1 - Combined Dimensioned Lumber

3. Calculate C_P

$$CP:$$

$$F_{CE} = \frac{0.822 E'_{min}}{(L_{e/d})^{2}} = \frac{0.822 (470000)}{48^{2}} = 167.7 \text{ rsi}$$

$$F_{C}^{*} = 1706 \text{ psi}$$

$$C = 0.8$$

$$C_{P} = 0.0962$$

4. Determine F'c by multiplying the tabulated Fc by all the determining factors

$$F_{c}^{1} = 1300(1.25 \ 1.05 \ 0.0962) = 164.2 \text{ psi}$$

- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

HEM-FIR N°2 $Z \times 1.5 \times 7.25^{"}$ $A = 10.88 \text{ in}^{"}(EACU)$ $F_{C} = 1300 \text{ psi}$ $E_{MIN} = 470000 \text{ psi}$ $f = 6^{'}$ Ke = 1.0

$$HEM - FIR N^{\circ} 2$$

 $Z \times 1.5 \times 7.25''$
 $A = 10.88 \text{ m}^{\circ} (EACH)$
 $F_{c} = 1300 \text{ psi}$
 $E_{MIN} = 470000 \text{ psi}$
 $\mathcal{A} = 6' \text{ Ke} = 1.0$

2 - Solid Dimensioned Lumber

Required:

Capacity

- 1. Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50
- 2. Find adjustment factors $C_D C_M C_t C_F C_i$
- 3. Calculate C_P
- 4. Determine F'c by multiplying the tabulated Fc by all the above factors
- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

University of Michigan, TCAUP

Arch 544

2 – Solid Dimensioned Lumber

Required:

- Capacity for roof LL
- 1. Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50

$$le = 6' = 72''$$

SLENDERNESS Y-Y
 $\frac{le}{d} = \frac{72''}{3.5''} = 20.6$

2. Find adjustment factors $(C_M = C_t = C_i = 0)$ $C_D C_M C_t C_F C_i$

HEM - FIR N°2 $3.5'' \times 7.25''$ $A = 25.38 m^2$ $F_c = 1300 PSI$ $E_{MIN} = 470 000 PSI$ $R = 6' K_c = 1.0$

Slide 5 of 33

2 – Solid Dimensioned Lumber

3. Calculate C_P

$$F_{CE} = \frac{0.822(470000)}{20.6^2} = 912.9 \text{ PSI}$$

$$F_{C}^* = 1300(1.25 \ 1.05) = 1706 \text{ PSI}$$

$$C = 0.8$$

$$C_P = 0.457$$

4. Determine F'c by multiplying the tabulated Fc by all the determining factors

- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

$$P_{Max} = F_{c}^{I}A = 781(25.38) = 19819 LBS$$

HEM - FIR N°2

$$3.5'' \times 7.25''$$

 $A = 25.38 m^2$
 $F_2 = 1300 \text{ PSI}$
 $E_{MIN} = 470 000 \text{ PSI}$
 $P = 6' \text{ Kp} = 1.0$

Slide 7 of 33

3 – Glulam Column

Brock Commons building, a student residence built for the University of British Columbia in Vancouver, Canada (2016)

18-story hybrid mass timber building -2 concrete floors at the base and 16 wood structure floors

University of Michigan, TCAUP

Arch 544

3 – Glulam Column

Required:

- Capacity
- 1. Calculate slenderness ratio l_e/d largest ratio governs. Must be < 50
- 2. Find adjustment factors $C_D C_M C_t C_i$ (No C_V)
- 3. Calculate C_P (c = 0.9)
- 4. Determine F'c by multiplying the tabulated Fc by all the above factors
- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

University of Michigan, TCAUP

Arch 544

Slide 9 of 33

3 – Glulam Column

Required:

- Capacity for roof LL
- 1. Calculate slenderness ratio l_e/d largest ratio governs. Must be < 50

$$l_e = 6' = 72''$$

SLENDERNESS Y-Y
 $\frac{l_e}{d} = \frac{72}{3.5} = 20.57$

HF L2 $3.5'' \times 7.5''$ $A = 26.25m^2$ E = 1350 PSI $E_{MIN} = 740000$ PSI A = 6' Ke = 1.0

3 - Glulam Column HF - L2 5 lams

Table 5B **Reference Design Values for Structural Glued Laminated Softwood Timber**

(Members stressed primarily in axial tension or compression) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

	Species	s Grade	All Loading Modulus of				Axially Loaded		ed	Bending about Y-Y Axis Loaded Parallel to Wide Faces of Laminations				Bending About X-X Axis Loaded Perpendicular to Wide Faces of Laminations		Fasteners
2.20			For	Elasticity ⁽⁶⁾			Parallel to Grain	Parallel to Grain		Bending		Shear Parallel to Grain ⁽¹⁾⁽²⁾⁽³⁾	Bending	Shear Parallel		
Combination Symbol			Deflection Calculations		Stability Calculations	s Compression Perpendicular	2 or More Lami-	4 or More Lami-	2 or 3 Lami-	4 or More Lami-	3 Lami-	2 Lami-	to Grain	2 Lami- nations to	to Gram	Specific Gravit for
				Eaxial	0.95 E _{axial}	Eaxial min	to Grain F _{c⊥}	nations Ft	nations F _c	nations F _c	nations F _{by}	nations F _{by}	nations F _{by}	Fvv	15 in. Deep ^(*) F _{bx}	F _{vx}
			(10 ⁶ psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	
Visually G	raded V	Vestern	Species		e											
	DF	L3	1.6	1.5	0.79	560	950	1550	1250	1450	1250	1000	230	1250	265	0.50
	DF	L2	1.7	1.6	0.85	560	1250	1950	1600	1800	1600	1300	230	1700	265	0.50
	DF	L2D	2.0	1.9	1.00	650	1450	2300	1900	2100	1850	1550	230	2000	265	0.50
	DF	LICL	2.0	1.9	1.00	590	1400	2100	1950	2200	2000	1650	230	2100	265	0.50
4	UF	L1	2.1	2.0	1.06	650	1650	2400	2100	2400	2100	1800	230	2200	265	0.50
6		1.2	1.4	1.3	0.09	375	1050	1250	1050	1200	1050	1100	190	1450	215	0.43
5		1.1	1.5	1.4	0.74	375	1050	1350	1500	1750	1550	1200	190	1450	215	0.43
7	HE	L 1D	1.7	1.0	0.85	500	1400	1750	1750	2000	1850	1550	190	1900	215	0.43
2(5)	SW	13	1.0	1.0	0.53	315	525	850	725	800	700	575	170	725	105	0.45
9	AC	13	1.3	1.0	0.63	470	725	1150	1100	1100	975	775	230	1000	265	0.00
0	AC	12	14	13	0.69	470	975	1450	1450	1400	1250	1000	230	1350	265	0.46
1	AC	L1D	1.7	1.6	0.85	560	1250	1900	1900	1850	1650	1400	230	1750	265	0.46
2	AC	L1S	1.7	1.6	0.85	560	1250	1900	1900	1850	1650	1400	230	1900	265	0.46
3	POC	L3	1.4	1.3	0.69	470	775	1500	1200	1200	1050	825	230	1050	265	0.46
4	POC	L2	1.5	1.4	0.74	470	1050	1900	1550	1450	1300	1100	230	1400	265	0.46
5	POC	L1D	1.8	1.7	0.90	560	1350	2300	2050	1950	1750	1500	230	1850	265	0.46
/isually G	raded S	outhern	Pine													
7	SP	N2M12	1.5	1.4	0.74	650	1200	1900	1150	1750	1550	1300	260	1400	300	0.55
7 1:10	SP	N2M10	1.5	1.4	0.74	650	1150	1700	1150	1750	1550	1300	260	1400	300	0.55
7 1:8	SP	N2M	1.5	1.4	0.74	650	1000	1500	1150	1600	1550	1300	260	1400	300	0.55
8	SP	N2D12	1.8	1.7	0.90	740	1400	2200	1350	2000	1800	1500	260	1600	300	0.55
a	SP	N2D10	1.8	1.7	0.90	740	1350	2000	1350	2000	1800	1500	260	1600	300	0.55
8 1:10	SP	N2D	1.8	1.7	0.90	740	1150	1750	1350	1850	1800	1500	260	1600	300	0.55
8 1:10	SP	N1M16	1.8	1.7	0.90	650	1350	2100	1450	1950	1750	1500	260	1800	300	0.55
8 1:10 8 1:8 9	00	N1M14	1.8	1.7	0.90	650	1350	2000	1450	1950	1750	1500	260	1800	300	0.55
8 1:10 8 1:8 9 9 1:14	SP	MARAAO	1.8	1.7	0.90	650	1300	1900	1450	1950	1750	1500	260	1800	300	0.55
8 1:10 8 1:8 9 9 1:14 9 1:12	SP	NIMIZ			0.00	650	1150	1700	1450	1850	1750	1500	260	1800	300	0.55
88 1:10 88 1:8 99 19 1:14 19 1:12 19 1:10	SP SP SP	N1M12	1.8	1.7	0.90	000			1700	2300	2100	1750	260	2100	300	0.55
88 1:10 18 1:8 19 19 1:14 19 1:12 19 1:10 50	SP SP SP SP	N1M12 N1M N1D14	1.8 2.0	1.7 1.9	1.00	740	1550	2300	1700	2000						
88 1:10 88 1:8 99 99 1:14 99 1:12 99 1:12 99 1:10 50 50 1:12	SP SP SP SP SP	N1M12 N1M N1D14 N1D12	1.8 2.0 2.0	1.7 1.9 1.9	1.00 1.00	740 740	1550 1500	2300 2200	1700	2300	2100	1750	260	2100	300	0.55

5. When Western Cedars, Western Cedars (North), Western Woods, and Redwood (open grain) are used in combinations for Softwood Species (SW), the reference design value for modulus of elasticity, E, shall be reduced by 100,000 psi and E_{ms} shall be reduced by 52,800 psi. When Coast Sitka Spruce, Coast Species, Western White Pine, and Eastern White Pine are used in combinations for Softwood Species (SW) reference design values for grain, F_n and F_n, shall be reduced by 109, before applying any other adjustments.
 6. Notations: E_{stat} = Axial moduli of elasticity for use in axial deformation calculation for compression and tension members as defined by NDS 5.2.7 (E_{stat} is equal to E_{n two} and E_{y me} as defined in Tables 5A and 5A Extended when layups are used as beams).
 0.95 E_{stat} = Apparent moduli of elasticity for use in eclumn stability calculations.

University of Michigan, TCAUP

Arch 544

Slide 11 of 33

HF LZ

3 – Glulam Column

Required:

- Capacity for roof LL
- 2. Find adjustment factors $C_D C_M C_t C_p$

C0 =	1.2	5 (F	oR.	Lr)
(NO	C.,	FOR	Fc	.)	

 $C_{M} = C_{t} = 1$

3.5" × 7.5" A = 26.25m2 E = 1350 PSI EMIN = 740 000 FSI R=6' Ke=1.0

Table 5.3.1 Applicability of Adjustment Factors for Structural Glued **Laminated Timber**

	ASD only Factor Factor	ASD and LRFD										LRFD only		
		Wet Service Factor	Temperature Factor	Beam Stability Factor ¹	Volume Factor ¹	Flat Use Factor	Curvature Factor	Stress Interaction Factor	Shear Reduction Factor	Column Stability F. ctor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
												K _F	¢	
$F_b' = F_b x$	CD	C _M	C_t	$C_{\rm L}$	Cv	C_{fu}	Cc	C_{I}	-	-	-	2.54	0.85	λ
$F_t' = F_t x$	CD	C _M	C_t	-	-	-	-	-	-	-	-	2.70	0.80	λ
$F_v = F_v x$	CD	C _M	C_t	-	-	-	-	-	C_{vr}	-	-	2.88	0.75	λ
$\mathbf{F}_{rt} = \mathbf{F}_{rt} \mathbf{x}$	CD	$C_M^{\ 2}$	$C_t^{\ 2}$	-	-	-	-	-	-	-	-	2.88	0.75	λ
$F_c' = F_c x$	CD	C _M	\mathbf{C}_{t}	-	-	-	-	-	-	$\mathbf{C}_{\mathbf{P}}$	-	2.40	0.90	λ
$\mathbf{F}_{\mathbf{c}\perp} = \mathbf{F}_{\mathbf{c}\perp} \mathbf{x}$	e signada Kalifada	См	C_t	-	-	-	-	-	-	-	C_{b}	1.67	0.90	
E' = E - x	-	C _M	\mathbf{C}_{t}	-	-	-	-	-	-	-	-	6 (- 8	Q-9	() <u>-</u> ()
$E_{\min}' = E_{\min} x$		C_{M}	C_t	-	-	-	-	-	-	-	-	1.76	0.85	-

The beam stability factor, C_{ν} shall not apply simultaneously with the volume factor, C_{ν} for structural glued laminated timber bend-ing members (see 5.3.6). Therefore, the lesser of these adjustment factors shall apply. For radial tension, F_{ν} the same adjustment factors (C_{M} and C_{ν}) for shear parallel to grain, F_{ν} shall be used. 1.

2.

3 – Glulam Column

3. Calculate C_P

$$F_{cE} = \frac{0.822(740\ 000)}{20.57^{2}} = 1437\ p_{SI}$$

$$F_{c}^{*} = 1350(1.25) = 1687\ p_{SI}$$

$$c = 0.9\ (4101004)$$

$$C_{p} = 0.694$$

4. Determine F'c by multiplying the tabulated Fc by all the determining factors

$$F_{c}^{l} = 1350(1.25 0.694) = 1171 \text{ psi}$$

- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

University of Michigan, TCAUP

Arch 544

4 – Built-Up Column

15.3 Built-Up Columns

15.3.1 General

The following provisions apply to nailed or bolted built-up columns with 2 to 5 laminations in which:

- (a) each lamination has a rectangular cross section and is at least 1-1/2" thick, $t \ge 1-1/2$ ".
- (b) all laminations have the same depth (face width), d.
- (c) faces of adjacent laminations are in contact.
- (d) all laminations are full column length.
- (e) the connection requirements in 15.3.3 or 15.3.4 are met.

Nailed or bolted built-up columns not meeting the preceding limitations shall have individual laminations designed in accordance with 3.6.3 and 3.7. Where individual laminations are of different species, grades, or thicknesses, the lesser adjusted compression parallel to grain design value, F_c ', and modulus of elasticity for beam and column stability, E_{min} ', for the weakest lamination shall apply.

HF L2 $3.5'' \times 7.5''$ $A = 26.25 m^2$ E = 1350 PSI $E_{MIN} = 740000 \text{ PSI}$ A = 6' Ke = 1.0

University of Michigan, TCAUP

Arch 544

Slide 15 of 33

4 – Built-Up Column

Required:

- Capacity
- 1. Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50 If the slenderness across the lams (I_2/d_2) controls then use K_f with C_p
- 2. Find adjustment factors $C_D C_M C_t C_F C_i$
- 3. Calculate C_P . If controlling slenderness is I_2/d_2 , use K_f
- Determine F'c by multiplying the tabulated Fc by all the above factors. F'c need not be smaller than case 1 above (individual unfastened lams)
- 5. Set the actual stress = allowable F'c = P/A
- 6. Solve for capacity, P = F'c A

4 - Built-Up Column Nailing criteria

Figure 5. Fastener Schedule for Built-Up Columns Fastened with Strong-Drive® SDW Truss-Ply Screws.

Required:

- Capacity for roof LL
- 1. Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50

$$le = 6' = 72''$$

SLENDERNESS Y-Y
 $\frac{le}{dz} = \frac{72''}{3''} = 24$

2. Find adjustment factors $(C_M = C_t = C_i = 0)$ $C_D C_M C_t C_F C_i$

$$C_{p} = 1.25$$
 (For L_{r})
 $C_{F} = 1.05$ (For E)

University of Michigan, TCAUP

Arch 544

4 – Built-Up Column

3. Calculate C_P

$$C_{p} = K_{f} \left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} \right]$$
(15.3-1)

where:

 F_c^* = reference compression design value parallel to grain multiplied by all applicable modification factors except C_P (see 2.3)

$$F_{cE} = \frac{0.822 E_{min}'}{(\ell_e / d)^2}$$

- $\label{eq:Kf} \begin{array}{l} {\sf K}_f = 0.6 \mbox{ for built-up columns where } \ell_{e2}/d_2 \mbox{ is used} \\ to calculate \mbox{ } {\sf F}_{cE} \mbox{ and the built-up columns are} \\ \hline \underline{nailed} \mbox{ in accordance with } 15.3.3 \end{array}$
- $\label{eq:Kf} \begin{array}{l} {\sf K}_{\sf f} = 0.75 \mbox{ for built-up columns where } \ell_{e2}/d_2 \mbox{ is } \\ \mbox{ used to calculate } {\sf F}_{eE} \mbox{ and the built-up col-} \\ \mbox{ umns are } \underline{bolted} \mbox{ in accordance with } 15.3.4 \end{array}$
- $\label{eq:Kr} \mathsf{K}_{\mathsf{f}} = 1.0 \text{ for built-up columns where } \ell_{\texttt{el}}/\texttt{d}_1 \text{ is used} \\ \text{to calculate } \mathsf{F}_{\texttt{cE}} \text{ and the built-up columns are} \\ \text{either nailed or bolted in accordance with} \\ 15.3.3 \text{ or } 15.3.4, \text{ respectively} \end{cases}$
- c = 0.8 for sawn lumber
- c = 0.9 for structural glued laminated timber or structural composite lumber

HEM-FIR N°2 $Z \times 1.5 \times 7.25''$ $A = 10.88 \text{ m}^{\circ}(\text{EACU})$ $F_{c} = 1300 \text{ psi}$ $E_{MIN} = 470000 \text{ psi}$ $\mathcal{L} = 6' \text{ Ke} = 1.0$

HEM-FIR N°2 Zx 1.5 x 7.25" A = 10.88 w (EACU) FE = 1300 PSI EMIN = 470000 PSI R=6' Ke= 1.0

3. Calculate C_P

Cr
K_f = 0.6

$$F_{cE} = \frac{0.822(470\ 000)}{24^2} = 670.7\ rsi$$

 $F_{c}^* = 1300(1.25\ 1.05) = 1706\ psi$
 $\frac{F_{cE}}{F_{c}^*} = 0.39$
C = 0.8 (SAWH LUMBER)
Cr = 0.6 $\left[\frac{1+0.39}{2(0.8)} - \frac{1}{2(0.8)}\right]^2 - \frac{0.39}{0.8}$
Cr = 0.2125
University of Michigan, TCAUP Arch 54

 $HEM - FIR N^{\circ} 2$ $Z \times 1.5 \times 7.25''$ $A = 10.88 \approx (EACH)$ $F_{c} = 1300 \text{ ps}$ $E_{MIN} = 470000 \text{ ps}$ R = 6' Ke = 1.0

4 – Built-Up Column

4. Determine F'c by multiplying the tabulated Fc by all the determining factors

$$F_{C}^{1} = 1300(1.25 \ 1.05 \ 0.212) = 362.6 \ psi$$

- 4. Set the actual stress = allowable F'c = P/A
- 5. Solve for capacity, P = F'c A

Nailing requirements for 2 2x8's

- (a) adjacent nails are driven from opposite sides of the column
- (b) all nails penetrate all laminations and at least 3/4 of the thickness of the outermost lamination

b) 3/4 (1.5") = 1.125" MIN. NAIL LENGTH = 1.5"+ 1.125" = 2.625" USE 10d COMMON L=3" D=0.143"

4 – Built-Up Column Nailing requirements for 2 2x8's

- (a) adjacent nails are driven from opposite sides of the column
- (b) all nails penetrate all laminations and at least 3/4 of the thickness of the outermost lamination
- (c) $15D \le$ end distance $\le 18D$
- (d) 20D \leq spacing between adjacent nails in a row $\leq 6t_{min}$
- (e) $10D \le$ spacing between rows of nails $\le 20D$
- (f) $5D \le edge distance \le 20D$
- (g) 2 or more longitudinal rows of nails are provided where $d > 3t_{min}$
- b) ³/₄ (1.5") = 1.125"
 MIN. NAIL LENGTH = 1.5"+ 1.125" = 2.625"
 USE IOJ COMMON L= 3" D= 0.143"
- C) 150 = 2.22" 180 = 2.664" USE END DISTANCE = 2.5"
- d) 2017 = 2.96" (tmin = 6 (1.5) = 9" ROW SPACING - USE 8"
- 2) 100 = 1.48" 200 = 2.96" DISTALLCE BETWEEN NAILS USE 2.25"
- f) 50=0.74" 200=2.96" EDGE DISTANCE - USE 2.5"

2.5"

Bolted Provisions

15.3.4 Bolted Built-Up Columns

15.3.4.1 The provisions in 15.3.1 and 15.3.2 apply to bolted built-up columns in which:

- (a) a metal plate or washer is provided between the wood and the bolt head, and between the wood and the nut
- (b) nuts are tightened to insure that faces of adjacent laminations are in contact
- (c) for softwoods: $7D \le end distance \le 8.4D$ for hardwoods: $5D \le end distance \le 6D$
- (d) $4D \le$ spacing between adjacent bolts in a row $\le 6t_{min}$
- (e) $1.5D \le$ spacing between rows of bolts $\le 10D$
- (f) $1.5D \le edge distance \le 10D$
- (g) 2 or more longitudinal rows of bolts are provided where $d > 3t_{min}$

where:

D = bolt diameter

- d = depth (face width) of individual lamination
- tmin = thickness of thinnest lamination

University of Michigan, TCAUP

Arch 544

Slide 25 of 33

4 – Built-Up Column

Bolted Provisions

15.3.4 Bolted Built-Up Columns

15.3.4.1 The provisions in 15.3.1 and 15.3.2 apply to bolted built-up columns in which:

- (a) a metal plate or washer is provided between the wood and the bolt head, and between the wood and the nut
- (b) nuts are tightened to insure that faces of adjacent laminations are in contact
- (c) for softwoods: $7D \le end distance \le 8.4D$ for hardwoods: $5D \le end distance \le 6D$
- (d) $4D \le$ spacing between adjacent bolts in a row $\le 6t_{min}$
- (e) $1.5D \le$ spacing between rows of bolts $\le 10D$
- (f) $1.5D \le edge distance \le 10D$
- (g) 2 or more longitudinal rows of bolts are provided where $d > 3t_{min}$

where:

D = bolt diameter

- d = depth (face width) of individual lamination
- tmin = thickness of thinnest lamination

5 – Spaced Column

Required:

- Capacity
- 1. Determine end fixity condition "a" or "b"
- 2. Calculate slenderness ratios:
- 3. $I_1/d_1 < 80$ $I_2/d_2 < 50$ $I_3/d_1 < 40$
- 4. Find adjustment factors $C_D C_M C_t C_F C_i$
- 5. Calculate C_P. Kx is based on end condition "a" or "b"
- 6. Determine F'c by multiplying the tabulated Fc by all the above factors.
- 7. Set the actual stress = allowable F'c = P/A
- 8. Solve for capacity, P = F'c A

Typical shear plate connection in end block of spaced column

- **Condition "a":** end distance $\leq \ell_1/20$
- ℓ_1 and ℓ_2 = distances between points of lateral support in planes 1 and 2, measured from center to center of lateral supports for continuous spaced columns, and measured from end to end for simple spaced columns, inches.
- ℓ_3 = Distance from center of spacer block to centroid of the group of split ring or shear plate connectors in end blocks, inches.
- d₁ and d₂ = cross-sectional dimensions of individual rectangular compression members in planes of lateral support, inches.
- **Condition "b":** $\ell_1/20 < \text{end distance} \le \ell_1/10$

Arch 544

5 – Spaced Column

Required:

- Capacity for roof LL
- 1. Assuming end condition "b" 72/10=7.2"
- 2. Calculate slenderness ratios:

 $\begin{array}{l} f_{1} = 72^{"}_{1.5^{"}} = 48 < 80 \\ f_{2} = 72^{"}_{1.5^{"}} = 9.9 < 50 \\ f_{3} = 28.8^{"}_{1.5^{"}} = 19.2 < 40 \\ \end{array}$

3. Find adjustment factors $(C_{M} = C_{t} = C_{i} = 0)$ $C_{D} C_{M} C_{t} C_{F} C_{i}$ $C_{F} = 1.25 (For L_{F})$ $C_{F} = 1.05 (For F_{E})$

5 – Spaced Column

Kx = 3.0 (сонолтон "6")

Condition "a": end distance $\leq \ell_1/20$

 ℓ_1 and ℓ_2 = distances between points of lateral support in planes 1 and 2, measured from center to center of lateral supports for continuous spaced columns, and measured from end to end for simple spaced columns, inches.

 ℓ_3 = Distance from center of spacer block to centroid of the group of split ring or shear plate connectors in end blocks, inches.

 d_1 and d_2 = cross-sectional dimensions of individual rectangular compression members in planes of lateral support, inches.

"a"

"b'

Condition "b": $\ell_1/20 < \text{end distance} \le \ell_1/10$

University of Michigan, TCAUP

4. Calculate C_P

$$F_{cE} = \frac{0.822 \,\text{K}_{x} \,\text{E}_{min}'}{\left(\ell_{e} \,/ \,d\right)^{2}}$$
$$K_{x} = 2.5 \text{ for fixity condition}$$
$$= 3.0 \text{ for fixity condition}$$

Arch 544

Slide 29 of 33

$$c = 0.8$$

$$F_{c}^{*} = 1300(1.25 \ 1.05) = 1706 \ p_{2}$$

$$F_{c} = \frac{0.822 \ K_{x} \ E_{min}'}{(J_{e/d})^{2}} = \frac{0.822(3.0)(470000)}{(48)^{2}} = 503_{p_{2}}$$

$$F_{c} = \frac{503}{(1706} = 0.29 \qquad \frac{R_{1}}{20} = \frac{72}{20} = 3.6''$$

$$C_{p} = 0.274 \qquad \frac{R_{1}}{10} = \frac{72}{10} = 7.2'$$

5. Determine F'c by multiplying the tabulated Fc by all the determining factors

$$F_{c}^{\prime} = 1300 (1.25 \ 1.05 \ 0.274) = 467.7 \, psi$$

- 6. Set the actual stress = allowable F'c = P/A
- 7. Solve for capacity, P = F'c A

University of Michigan, TCAUP

Built-Up Column capacity example

3 X 2x6 (1.5 x 5.5) S-P-F No.2 Fc = 1150 psi Emin = 510000 psi

height = 10 ft Ke = 1.0

C_D (snow) = 1.15 C_F = 1.1

Built-Up Column capacity example

3 X 2x6 (1.5 x 5.5) S-P-F No.2 Fc = 1150 psi Emin = 510000 psi

height = 10 ft Ke = 1.0

C_D (snow) = 1.15 C_F = 1.1

University of Michigan, TCAUP

$$C_{p}:$$

$$F_{CE} = \frac{0.822(510000)}{26.67^{2}} = 589.5 \text{ psi}$$

$$F_{C}^{*} = 1150(1.15 1.10) = 1454.7 \text{ psi}$$

$$F_{C}^{*} = \frac{589.5}{1454.7} = 0.405$$

$$C_{p} = 0.6 (NAILEO)$$

$$C_{p} = 0.6 \left[\frac{1+0.405}{2(0.8)} - \sqrt{\left(\frac{1+0.405}{2(0.8)}\right)^{2} - \frac{0.405}{0.8}}\right]$$

$$C_{p} = 0.218$$

$$F_{C}^{1} = 1150(1.15 1.10 0.218) = 317.4 \text{ psi}$$

$$F_{Max} = F_{C}^{1} A = 317.4 (24.75) = 7856 \text{ *}$$

$$T_{RIB}. ARLA = 18' \times 6' = 108 \text{ sp}$$

$$T_{OTAL} WAD CAPACITY = 7856/108 = 72.7 \text{ psf}$$

$$Arch 54$$