Glue Laminated Timbers (Glulam)

- Properties
- ASD approach
- NDS criteria
- Wood Beam Analysis
- Wood Beam Design

University of Michigan, TCAUP Wood Slide 1 of 33 **APA** Literature APA-X450 Glulam in Residential Building АРА APA-S475 CONSTRUCTION GUIDE Glued Laminated Beam APA Glulam АРА **Connection Details** CONSTRUCTION GUIDE Glulam АРА APA-T300 APA-X440

University of Michigan, TCAUP

Glulam Production

Glulam Properties

Dimensions

- Limited mostly by transport
- Standard dimension given in NDS Supplement
- Depth based on lam thickness and number
- Flatter members use 1 ¹/₂ " or 1 3/8" lams
- Tightly curved members use thinner lams, ³/₄"

Glulam Properties

University of Michigan, TCAUP

Effects of Defects

Joining methods

SECT 2

Glulam Properties

Allowable Stress Design by NDS Shear

Adjustment Factors

	ASD				AS	SD and	LRF	D]]	LRFD	č.
	Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor ¹	Volume Factor ¹	Flat Use Factor	Curvature Factor	Stress Interaction Factor	Shear Reduction Factor	Column Stability Factor	Bearing Area Factor	4 H Format Conversion Factor	φ- Resistance Factor	Time Effect Factor
$F_b' = F_b x$	CD	См	Ct	C_L	Cv	C _{fu}	Cc	C_{I}	-	-	-	2.54	0.85	λ
$F_t = F_t - x$	CD	См	C_t	12		12	-	-	-	121	-	2.70	0.80	λ
$F_v = F_v x$	CD	CM	Ct			-		-	C _{vr}		-	2.88	0.75	λ
$F_{rt} = F_{rt} x$	CD	C_M^2	C_t^{2}	-	-	-	-	-	-	-	-	2.88	0.75	λ
$F_c' = F_c x$	CD	См	Ct			12	÷.	-	121	Cp	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp} x$	-	См	Ct	-	-	-	-	-	-	-	Cb	1.67	0.90	-
E'=E x	-	См	Ct	-	-	-	-	-	-	-	-	-	-	-
$E_{\min} = E_{\min} x$	-	См	C_t	8	-		-	÷		-	-	1.76	0.85	-
 The beam sta ing members 	bility fac (see 5.3.0	tor, C _L , s 6). There:	hall not a fore, the	apply sin lesser of	ultaneou these ad	isly with	the volu factors s	me fact hall app	or, C _V , f oly.	or struct	tural glue	d lamina	ted timbe	er bend-

For radial tension, F_{π} , the same adjustment factors (C_M and C_t) for shear parallel to grain, F_v , shall be used.

Wood

Table 5.3.1 Applicability of Adjustment Factors for Structural Glued Laminated Timber

2. For radial tension

Adjustment Factors

Allowable	Flexure	Stress	F⊾'
			· n

F_b from tables determined by species and grade

1

T≤100*F

1.0

1.0

C,

100°F<T≤125°F

0.9

0.8

glued laminated timber, prefabricate in 4.1.4, 5.1.5, 7.1.4, 8.1.4, and 9.3.3

 $\mathbf{F}_{\mathbf{b}}' = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathbf{D}} \, \mathbf{C}_{\mathbf{M}} \, \mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{L}} \, \mathbf{C}_{\mathbf{V}} \, \mathbf{C}_{\mathbf{fu}} \, \mathbf{C}_{\mathbf{c}} \, \mathbf{C}_{\mathbf{I}} \right)$

Usage factors for flexure:

- **C**_D Load Duration Factor
 - \mathbf{C}_{t} Temperature Factor

Table 2.3.2 Frequently Used LoadDuration Factors, Cp1

Slide 11 of 33

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load
(2) Actual stress of to (DL+LL)	iue	$\leq (1.0)$ (Design value) $\leq (1.0)$ (Design value)
to (DL+LL) (3) Actual stress of	due	\leq (1.0) (Design value)
to (DL+WL))	\leq (1.6) (Design value)
(4) Actual stress (to (DL+LL+	SL)	\leq (1.15) (Design value)
to (DL+LL+	WL)	≤ (1.6) (Design value)
(6) Actual stress of to (DL+SL+	iue WL)	\leq (1.6) (Design value)
(/) Actual stress of to (DL+LL+	iue SL+WL)	≤ (1.6) (Design value)

1.	Wet a	nd dry osite h	servi mber,	oe , m
20	12	NC	S	

Fb, Fs, Fc, and Fel

Reference Desig Values

F_b, E, E_{min}

Table 2.3.3 Temperature Factor, C,

In-Service Moisture Conditions¹

Wet or Dry

Dry Wet 125°F<T≤150°F

0.9

0

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

$$\mathbf{F}_{\mathbf{b}}' = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathbf{D}} \, \mathbf{C}_{\mathbf{M}} \, \mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{L}} \, \mathbf{C}_{\mathbf{V}} \, \mathbf{C}_{\mathbf{fu}} \, \mathbf{C}_{\mathbf{c}} \, \mathbf{C}_{\mathbf{I}} \right)$$

Usage factors for flexure: C_M Moisture Factor C_{fu} Flat Use

Wet Service Factor, C_M

When structural glued laminated timber is used where moisture content will be 16% or greater, design values shall be multiplied by the appropriate wet service factors from the following table:

	Wet Service Factors, C _M										
F_{b}	F_t	$F_{\rm v}$	$F_{c\perp}$	F_{c}	$E \mbox{ and } E_{\mbox{min}}$						
0.8	0.8	0.875	0.53	0.73	0.833						

Flat Use Factor, C_{fu}

Tabulated bending design values for loading parallel to wide faces of laminations, F_{by} , shall be multiplied by the following flat use factors when the member dimension parallel to wide faces of laminations is less than 12":

 Flat Use Factors, C _{fu}										
Member dimension parallel to wide faces of laminations	C _{fu}									
10-3/4" or 10-1/2"	1.01									
8-3/4" or 8-1/2"	1.04									
6-3/4"	1.07									
5-1/8" or 5"	1.10									
3-1/8" or 3"	1.16									
2-1/2"	1.19									

Slide 13 of 33

University of Michigan, TCAUP

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \, \mathbf{C}_{M} \, \mathbf{C}_{t} \left(\mathbf{C}_{L} \, \mathbf{C}_{V} \right) \mathbf{C}_{fu} \, \mathbf{C}_{c} \, \mathbf{C}_{1} \right)$

Usage factors for flexure: $\mathbf{C}_{\mathbf{V}}$ Volume Factor

5.3.6 Volume Factor, Cv

Wood

When structural glued laminated timber members are loaded in bending about the x-x axis, the reference bending design values, \mathbf{F}_{bx}^+ , and \mathbf{F}_{bx}^- , shall be multiplied by the following volume factor:

$$C_{v} = \left(\frac{21}{L}\right)^{1/x} \left(\frac{12}{d}\right)^{1/x} \left(\frac{5.125}{b}\right)^{1/x} \le 1.0$$
 (5.3-1)

where:

- L = length of bending member between points of zero moment, ft
- d = depth of bending member, in.
- b = width (breadth) of bending member. For multiple piece width layups, b = width of widest piece used in the layup. Thus, $b \le 10.75$ ".
- x = 20 for Southern Pine
- x = 10 for all other species

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

$$F_b' = F_b (C_D C_M C_t C_L C_V C_{fu} C_c C_l)$$

Usage factors for flexure:

- C_c Curvature Factor
- C. Stress Interaction Factor

5.3.8 Curvature Factor, C_c

For curved portions of bending members, the reference bending design value shall be multiplied by the following curvature factor:

 $C_{c} = 1 - (2000)(t / R)^{2}$ (5.3-3)

where:

t = thickness of laminations, in.

R = radius of curvature of inside face of member, in.

 $t/R \le 1/100$ for hardwoods and Southern Pine

 $t/R \le 1/125$ for other softwoods

The curvature factor shall not apply to reference design values in the straight portion of a member, regardless of curvature elsewhere.

University of Michigan, TCAUP

Wood

5.3.9 Stress Interaction Factor, CI

For the tapered portion of bending members tapered on the compression face, the reference bending design value, F_{bx}, shall be multiplied by the following stress interaction factor:

$$C_{I} = \frac{1}{\sqrt{1 + (F_{b} \tan \theta / F_{v}C_{w})^{2} + (F_{b} \tan^{2} \theta / F_{c\perp})^{2}}}$$
(5.3-4)

where:

θ = angle of taper, degrees

For members tapered on the compression face, the stress interaction factor, CI, shall not apply simultaneously with the volume factor, C_V , therefore, the lesser of these adjustment factors shall apply.

For the tapered portion of bending members tapered on the tension face, the reference bending design value, Fbx, shall be multiplied by the following stress interaction factor:

$$C_{I} = \frac{1}{\sqrt{1 + (F_{b} \tan \theta / F_{v}C_{w})^{2} + (F_{b} \tan^{2} \theta / F_{n})^{2}}}$$
(5.3-5)

where:

 θ = angle of taper, degrees

For members tapered on the tension face, the stress interaction factor, C_I, shall not apply simultaneously with the beam stability factor, CL, therefore, the lesser of these adjustment factors shall apply. Taper cuts on the tension face of structural glued

laminated timber beams are not recommended.

Slide 15 of 33

Adjustment Factors - CL Allowable Flexure Stress F_b'

F_b from tables determined by species and grade $\mathbf{F}_{\mathbf{b}}^{\mathsf{T}} = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathbf{D}} \, \mathbf{C}_{\mathsf{M}} \, \mathbf{C}_{\mathsf{t}} \, \mathbf{C}_{\mathsf{L}} \, \mathbf{C}_{\mathsf{V}} \, \mathbf{C}_{\mathsf{fu}} \, \mathbf{C}_{\mathsf{c}} \, \mathbf{C}_{\mathsf{I}} \right)$

Cantilever ¹	when $\ell_u/d < 7$	ale de Merri e de Co	when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ_{e} =1.33 ℓ_{u}	line in the	$\ell_{\rm e}$ =0.90 $\ell_{\rm u}$ + 3d
Concentrated load at unsupported end	ℓ_{e} =1.87 ℓ_{u}		$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$	a lasta	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$	25 ang
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	• 195
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		ℓ_{e} =1.54 ℓ_{u}	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		ℓ_{e} =1.68 ℓ_{u}	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points	21 - 22 - 140	ℓ_{e} =1.73 ℓ_{u}	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		ℓ_{e} =1.78 ℓ_{u}	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	Reg Reg
Equal end moments	and the second second	$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	

 $\begin{aligned} &\ell_e = 2.05 \, \ell_u & \text{when } \ell_d (2/4) \leq 14.3 \\ &\ell_e = 1.84 \, \ell_u & \text{when } \ell_d (2/4) \leq 14.3 \\ &\ell_e = 1.84 \, \ell_u & \text{when } \ell_d (2/4) \leq 14.3 \end{aligned}$ 2. Multiple span applications shall be based on table values or engineering analysis.

C_I Beam Stability Factor

C_L is calculated using equation 3.3-6

The maximum allowable slenderness, R_B is 50

 C_L is not used together with $C_V.$ Use the lesser. C_L is not used together with $C_{l^{\star}}$. Use the lesser (see commentary).

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{b^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, R_B , shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

where:

$$\begin{split} F_b{}^* &= \text{reference bending design value multiplied by} \\ &= \text{all applicable adjustment factors except } C_{fu}, \\ &= C_V \text{ (when } C_V \leq 1.0\text{), and } C_L \text{ (see 2.3), psi} \end{split}$$

$$F_{bE} = \frac{1.20 E_{min}}{R_{B}^{2}}$$

3.3.3.9 See Appendix D for background information concerning beam stability calculations and Appendix F for information concerning coefficient of variation in modulus of elasticity (COV_E).

3.3.3.10 Members subjected to flexure about both principal axes (biaxial bending) shall be designed in accordance with 3.9.2.

University of Michigan, TCAUP

Wood

Slide 17 of 33

Adjustment Factors for Shear

Allowable Flexure Stress F,

F_v from tables determined by species and grade

Usage factors for flexure:

- C_D Load Duration Factor
- C_M Moisture Factor
- C_t Temperature Factor
- C_{vr} Shear Reduction Factor

5.3.10 Shear Reduction Factor, Cvr

The reference shear design values, F_{vx} and F_{vy} , shall be multiplied by the shear reduction factor, $C_{vr} = 0.72$ where any of the following conditions apply:

- 1. Design of non-prismatic members.
- Design of members subject to impact or repetitive cyclic loading.
- 3. Design of members at notches (3.4.3.2
- 4. Design of members at <u>connections</u> (3.4.3.3, 11.1.2, 11.2.2).

Shear at Supports

Modified shear V' used to compute reduced shear f'_v

Glulam - Analysis

Example Problem

X = 2.4255 10.231 KLF = 10.5 1

 $M_{max} \quad \text{Restrive} = 12.7 \text{ K}^{-1}$ $M_{max} \quad \text{Neclative} = 11.5 \text{ K}^{-1}$ $V_{max} = 3.35 \text{ K}$ $R_{max} = 5.46 \text{ K} \quad (\text{BedRING})$

University of Michigan, TCAUP

21'

L for + moment CV

14

11.5 1-1

Glulam - Analysis - Example Problem 20F-V2 SP/SP

(Members stressed primarily in bending) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

and an and a second																			_
				Be	ending Abo	out X-X Axis					Bene	ding About	Y-Y Ax	is		Axiall	y Loaded	Fast	en
				(Loade	d Perpendicu	lar to Wide Fa	ices	ces (Loaded Parallel to Wide Faces											
					of Lamin	ations)						of Laminatio	ons)						
				Con	npression	Shear Parallel		Modulus			Compression		Tension	Compression	Specific Gravity				
		Ber	nding	Perp	endicular	to Grain		of			Perpendicular	to Grain		of		Parallel to	Parallel to	fr th	or
		1 1		to	Grain	_		Elasticity		Bending	to Grain			Elasticity	. Fee	Grain	Grain	Fastene	T
		Boston of herm	Trad Beam	Face	Face		Defi	or	Stability				Defk	ection	Stability			Top or	
		Stressed in	Siressed in				Calcul	ations ⁽⁶⁾	Calculations				Calcul	ations ⁽⁸⁾	Calculations			Bottom	5
		tension	Tension						C,			8			CL			Face	
		(Positive Bending)	(Negative Bending)		1	- (2)	-	-	-6	-	-	- (3)	-	-	1	·	-		-
Combination	Species	Fbx	Fbx		F _{c⊥x}	F _{vx} **/	E _{x true}	E _{x app}	Exmin	Fby	F _{c⊥y}	F _{vy} ^{vo}	E _{y true}	E _{y app}	E _{y min}	Ft.	Fc	1	G
Symbol	Outer/ Core	(psi)	(psi)		(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)		_
16F-	1.3E	1600	925		315	195	1.4	1.3	0.69	800	315	170	1.2	1.1	0.58	675	925	0	1.4
16F-V3	DF/DF	1600	1250	560	560	265	1.6	1.5	0.79	1450	560	230	1.6	1.5	0.79	975	1500	0.50	
16F-V6	DF/DF	1600	1050	375	375	265	1.7	1.6	0.85	1450	375	230	1.0	1.5	0.69	825	1150	0.50	
16F-E3	DF/DF	1600	1200	560	560	265	1.7	1.6	0.85	1400	560	230	1.6	1.5	0.79	975	1600	0.50	
6F-E6	DF/DF	1600	1600	560	560	265	1.7	1.6	0.85	1550	560	230	1.6	1.5	0.79	1000	1600	0.50	
6F-E7	HF/HF	1600	1600	375	375	215	1.5	1.4	0.74	1350	375	190	1.4	1.3	0.74	875	1250	0.43	
6F-V2	SP/SP	1600	1400	740	650	300	. 1.6	1.5	0.79	1450	650	260	1.5	1.4	0.74	1000	1300	0.55	Т
6F-V3	SP/SP	1600	1450	740	740	300	1.5	1.4	0.74	1450	650	260	1.5	1.4	0.74	975	1400	0.55	
16F-V5	SP/SP	1600	1600	650	650	300	1.7	1.6	0.85	1600	650	260	1.6	1.5	0.79	1000	1550	0.55	
16F-E1	SP/SP SP/SP	1600	1250	650	650	300	1.8	1.6	0.85	1650	650	260	1.7	1.6	0.85	1100	1550	0.55	
20F-	1.5E	2000	1100		425	195	1.6	1.5	0.79	800	315	170	1.3	1.2	0.63	725	925	0	1.41
20F-V3	DF/DF	2000	1450	650	560	265	1.7	1.6	0.85	1450	560	230	1.6	1.5	0.79	1000	1550	0.50	Т
20F-V7	DF/DF	2000	2000	650	650	265	1.7	1.6	0.85	1450	560	230	1.7	1.6	0.85	1050	1600	0.50	
20F-V12	AC/AC	2000	1400	560	560	265	1.6	1.5	0.79	1250	470	230	1.5	1.4	0.74	925	1500	0.46	
0F-V13	POC/POC	2000	1450	560	560	265	1.6	1.5	0.79	1300	470	230	1.5	1.4	0.74	900	1600	0.46	
0F V15	POC/POC	2000	2000	560	560	265	1.6	1.5	0.79	1300	470	230	1.5	1.4	0.74	900	1600	0.46	
20F-E2	HF/HF	2000	1400	500	500	215	1.7	1.6	0.85	1200	375	190	1.5	1.4	0.74	925	1350	0.43	
20F-E3	DF/DF	2000	1200	560	560	265	1.8	1.7	0.90	1400	560	230	1.7	1.6	0.85	1050	1600	0.50	
OF-E6	DF/DF	2000	2000	560	560	265	1.8	1./	0.90	1450	375	230	1.7	1.0	0.85	1050	1450	0.50	
OF-E7	ES/ES	2000	1300	450	450	200	1.6	1.5	0.79	1000	315	175	1.5	1.4	0.74	825	1100	0.41	
4F-E/SPF1	SPF/SPF	2400	2400	560	560	215	1.7	1.6	0.85	1150	470	190	1.7	1.6	0.85	1150	2000	0.42	
4F-E/SPF3	SPF/SPF	2400	1550	560	650	215	1.7	1.6	0.85	1200	470	195	1.6	1.5	0.79	900	1750	0.42	
20F-V2	SP/SP	2000	1550	740	650	300	1.6	1.5	0.79	1450	650	260	1.5	1.4	074	1000	1400	0.55	Т
0F-V3	SP/SP	2000	1455	650	650	300	1.6	1.5	0.79	1600	650	260	1.6	1.5	0.79	1000	1400	0.55	
20F-V5	SP/SP	2000	2000	740	740	300	1.7	1.6	0.85	1450	650	260	1.5	1.4	0.74	1050	1500	0.55	
20F-E1 20F-E3	SP/SP SP/SP	2000	1300	650	650	300	1.8	1.7	0.90	1400	650	260	1.7	1.6	0.85	1150	1600	0.55	
24F-	1.7E	2400	1450		500	210	1.8	1.7	0.90	1050	315	185	1.4	1.3	0.69	775	1000	0).42
4F-V5	DF/HF	2400	1600	650	650	215	1.8	1.7	0.90	1350	375	200	1.6	1.5	0.79	1100	1450	0.50	Т
24F-V10	DF/HF	2400	2400	650	650	215	1.9	1.8	0.95	1450	375	200	1.6	1.5	0.79	1150	1550	0.50	
24F-E11	HF/HF	2400	2400	500	500	215	1.9	1.8	0.95	1550	375	190	1.6	1.5	0.79	1150	1550	0.43	
4F-E15	nr/HF	2400	1600	1 300	1 300	215	1.9	1.0	0.95	1200	375	190	1.0	1.5	0.79	a15	1300	0.43	÷
24F-V1	SP/SP	2400	1750	740	650	300	1.8	1.7	0.90	1450	650	260	1.6	1.5	0.79	1100	1500	0.55	
4F-V4 (4)	SP/SP	2400	1650	740	650	210	1.8	1.7	0.90	1350	470	230	1.6	1.5	0.79	975	1350	0.55	

Glulam - Analysis Example Problem

3. determine factors

use lesser of CL or CV

Glulam - Analysis Example Problem

3. Determine factors

use lesser of CL or CV

 $\frac{FoR + Hortcust}{F_{0} = 2000 \text{ rsi}} = \frac{F_{0}}{V} \text{ Eymm} = 740000 \text{ psi}}$ $\frac{F_{0}}{V} = 25' = 300'' \quad \frac{F_{0}}{d} = 25(12)/13.75 = 21.82 > 14.3$ $e = 1.84 \text{ J}_{0} = 1.84 (300'') = \frac{552''}{R_{e}} \text{ (see table footnote)}$ $R_{B} = \sqrt{\frac{552(13.75)'}{3.52'}} = 24.89 < 50 \text{ V}$ $F_{EE} = \frac{1.20(740000)}{24.42^{2}R_{e}} = \frac{1433.2}{500} \text{ psi}$ $F_{0}^{*} = 2000(1.25) = 2500 \text{ psi}$ $C_{L} = 0.541$ $C_{L} < C_{V} \quad \therefore \text{ USE } C_{L} \text{ Net } C_{V}$

University of Michigan, TCAUP

Wood

Slide 23 of 33

Glulam - Analysis Example Problem

4. Check stress

 Table 1D
 Section Properties of Southern Pine Structural Glued Laminated Timber (Cont.)

Depth	Area		X-X Axis		Y-Y	Axis		
d (in.)	A (in. ²)	$I_x(in.^4)$	$S_x(in.^3)$	r _x (in.)	$I_y(in.^4)$	$S_y(in.^3)$		
		(3	-1/2 in) Width	nang ang kenalan serang Kabupatèn kenalan serang	$(r_y = 1.010 \text{ in.})$			
5-1/2	19.25	48.53	17.65	1.588	19.65	11.23		
6-7/8	24.06	94.78	27.57	1.985	24.56	14.04		
8-1/4	28.88	163.8	39.70	2.382	29.48	16.84		
9-1/4	32.38	230.8	49.91	2.670	33.05	18.89		
9-1/2	33.25	250.1	52.65	2.742	33.94	19.40		
9-5/8	33.69	260.1	54.04	2.778	34.39	19.65		
11	38.50	388.2	70.58	3.175	39.30	22.46		
11-1/4	39.38	415.3	73.83	3.248	40.20	22.97		
11-7/8	41.56	488.4	82.26	3.428	42.43	24.24		
12-3/8	43.31	552.7	89.33	3.572	44.21	25.27		
13-3/4	48.13	758.2	110.3	3.969	49.13	28.07		
14	49.00	800.3	114.3	4.041	50.02	28.58		
15-1/8	52.94	1009	133.4	4.366	54.04	30.88		
16	56.00	1195	149.3	4.619	57.17	32.67		
16-1/2	57.75	1310	158.8	4.763	58.95	33.69		
17-7/8	62.56	1666	186.4	5,160	63.87	36.49		

$$F_{b}^{'} = 2000 (1.25 \ 0.541 \) = 1353 psi
f_{b} = \frac{M}{5x} = \frac{12700(12)}{110.3} = 1385 psi \leq 1353 psi FAILS!$$

University of Michigan, TCAUP

Wood

Slide 26 of 33

Glulam - Design Procedure

Given: Glulam grade, loading, bracing, conditions (moisture, temperature)

Find: section dimensions

- 1. Guess section: d in inches \rightarrow 0.9 L in feet b/d \rightarrow 1/3 to 1/5
- 2. Calculate C_v
- 3. Calculate C_L
- 4. Estimate DL
- 5. Calculate moment
- 6. Determine actual bending stress $f_b = M/Sx$
- 7. Determine F'_b
- 8. Check bending stress, revise if required
- 9. Check shear stress
- 10. Check bearing
- 11. Check deflection University of Michigan, TCAUP

Slide 27 of 33

Glulam - Design Example Problem

$$\begin{array}{l} \text{GLULAM} \\ \text{PF/DF} & 20F-V3 \\ \text{F}_{6x} &= 2000 \text{ psi} \\ \text{F}_{5x} &= 265 \text{ psi} \\ \text{F}_{7x} &= 265 \text{ psi} \\ \text{Eymin} &= 790000 \text{ psi} \\ \text{DENSTY} & 31.2 \text{ PCF} \\ \text{DRY} \end{array}$$

D+L P= 2750* W SELF * 30' 1 1375+ SELF

braced at supports and load point

1. Guess section: d" \rightarrow 0.9 L' b/d \rightarrow 1/3 to 1/5

$$\begin{aligned} & \text{LIDESS SIZE:} \\ & \text{d} \stackrel{?}{\propto} 0.9 \text{ L}' = 0.9(30) = 27'' \\ & \frac{b}{3} & \frac{1}{3} & \frac{1}{5} & \text{TRY } 5.125 & \text{H}_{5}^{1} \\ & \text{TRY } 5.125 \times 27 & A = 138.4_{1n}^{2} & 5x = 622.7_{1n}^{2} \end{aligned}$$

Wood

Glulam - Analysis - Example Problem 20F-V2 SP/SP

Table 5A Expanded - Reference Design Values for Structural Glued Laminated Softwood Timber Combinations¹

(Members stressed primarily in bending) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

				Be	nding Abo	out X-X Axis	5				Ben	ding About	t Y-Y Ax	is		Axiall	y Loaded	Fas
				(Loade	d Pernendici	lar to Wide E	aces				(Load	ed Parallel to	Wide Fac	es				
				120000	of Lamin	ations)	0000				(2000	of Laminati	ons)					
				Corr	pression	Shear Parallel		Modulus			Compression	Shear Parallel	T	Modulus		Tension	Compression	Spec
		Be	anding	Perp	endicular	to Grain		of			Perpendicular	to Grain		of		Parallel to	Parallel to	
				to	Grain			Elasticity		Bending	to Grain			Elasticity		Grain	Grain	Faste
				Tension	Compression		F	or	For				F	or	For			Ten er
		Bottom of beam	Top of Beam	Face	Face	8	Defle	ection (f)	Stability				Defk	ection (8)	Stability			Bottom
		Stressed in	Siressed in				Calcul	anous	Calculations				Calcus	auoris	Carcolations	1		Face
		(Positive Bending)	(Negative Bending)															
Combination	Species	Fhr	Fhy		Felx	F _{vv} ⁽²⁾	Extrue	Exann	Exmin	Fhy	Feir	F.,, (3)	Evtrue	Evann	Evmin	F,	Fc	
Combal	Outor/ Coro	(nei)	(nei)		(nsi)	(nei)	(10 ⁸ nei)	(10 ⁶ pei)	(10 ⁶ nei)	(nsi)	(nsi)	(nsi)	(10 ⁶ nei)	(10 ⁶ nei)	(10 ⁶ psi)	(psi)	(psi)	1
3911001	1 3E	1600	025	the second	215	105	14	13	0.69	800	315	170	12	11	0.58	675	925	0.020
16E-V3	DE/DE	1600	1250	560	560	265	1.6	1.5	0.79	1450	560	230	1.6	1.5	0.79	975	1500	0.50
16F-V6	DF/DF	1600	1600	560	560	265	1.7	1.6	0.85	1450	560	230	1.6	1.5	0.79	1000	1600	0.50
16F-E2	HF/HF	1600	1050	375	.375	215	1.5	1.4	0.74	1200	375	190	1.4	1.3	0.69	825	1150	0.43
16F-E3	DF/DF	1600	1200	560	560	265	1.7	1.6	0.85	1400	560	230	1.6	1.5	0.79	975	1600	0.50
16F-E6	DF/DF	1600	1600	560	560	265	1.7	1.6	0.85	1550	375	230	1.6	1.5	0.79	875	1600	0.50
105-57	nr/HF	1 1800	1000	3/5	3/5	215	1.5	1.4	0.74	1330	575	190	1 1.4	1.0	0.74	015	1200	0.40
16F-V2	SP/SP	1600	1400	740	650	300	1.6	1.5	0.79	1450	650	260	1.5	1.4	0.74	1000	1300	0.55
16F-V3	SP/SP	1600	1450	650	740	300	1.5	1.4	0.74	1450	650	260	1.5	1.4	0.74	1000	1550	0.55
16F-E1	SP/SP	1600	1250	650	650	300	1.7	1.6	0.85	1400	650	260	1.7	1.6	0.85	1050	1550	0.55
16F-E3	SP/SP	1600	1600	650	650	300	1.8	1.7	0.90	1650	650	260	1.7	1.6	0.85	1100	1550	0.55
20F-	1.5E	2000	1100		425	195	1.6	1.5	0.79	800	315	170	1.3	1.2	0.63	725	925	18 B
20F-V3	DF/DF	2000	1450	650	560	265	1.7	1.6	0.85	1450	560	230	1.6	1.5	0.79	1000	1550	0.50
20F-V7	DF/DF	2000	2000	650	650	265	1.7	1.6	0.85	1450	560	230	1.7	1.6	0.85	1050	1600	0.50
20F-V12	AC/AC	2000	2000	560	560	205	1.0	1.5	0.79	1250	470	230	1.5	14	0.74	950	1550	0.46
20F-V13	POC/POC	2000	1450	560	560	265	1.6	1.5	0.79	1300	470	230	1.5	1.4	0.74	900	1600	0.46
20F-V15	POC/POC	2000	2000	560	560	265	1.6	1.5	0.79	1300	470	230	1.5	1.4	0.74	900	1600	0.46
20F-E2	HF/HF	2000	1400	500	500	215	1.7	1.6	0.85	1200	375	190	1.5	1.4	0.74	925	1350	0.43
20F-E3	DF/DF	2000	1200	560	560	265	1.8	1.7	0.90	1400	560	230	1.7	1.0	0.85	1050	1600	0.50
20F-E0	UF/UF	2000	2000	500	500	205	1.0	1.6	0.85	1450	375	190	1.5	1.4	0.74	1050	1450	0.43
20F-E8	ES/ES	2000	1300	450	450	200	1.6	1.5	0.79	1000	315	175	1.5	1.4	0.74	825	1100	0.41
24F-E/SPF1	SPF/SPF	2400	2400	560	560	215	1.7	1.6	0.85	1150	470	190	1.7	1.6	0.85	1150	2000	0.42
24F-E/SPF3	SPF/SPF	2400	1550	560	650	215	1.7	1.6	0.85	1200	470	195	1.6	1.5	0.79	900	1750	0.42
20F-V2	SP/SP	2000	1550	740	650	300	1.6	1.5	0.79	1450	650	260	1.5	1.4	0.74	1000	1400	0.55
20F-V3	SP/SP	2000	1450	650	650	300	1.6	1.5	0.79	1600	650	260	1.6	1.5	0.79	1000	1400	0.55
20F-V5	SP/SP	2000	2000	740	740	300	1.7	1.6	0.85	1450	650	260	1.5	1.4	0.74	1050	1500	0.55
20F-E1 20F-E3	SP/SP SP/SP	2000	2000	650	650	300	1.8	1.7	0.90	1400	650	260	1.7	1.6	0.85	1150	1600	0.55
24F.	1.7E	2400	1450	100.00	500	210	1.8	1.7	0.90	1050	315	185	1.4	1.3	0.69	775	1000	100
24F-V5	DE/HE	2400	1600	650	650	215	1.8	1.7	0.90	1350	375	200	1.6	1.5	0.79	1100	1450	0.50
24F-V10	DF/HF	2400	2400	650	650	215	1.9	1.8	0.95	1450	375	200	1.6	1.5	0.79	1150	1550	0.50
24F-E11	HF/HF	2400	2400	500	500	215	1.9	1.8	0.95	1550	375	190	1.6	1.5	0.79	1150	1550	0.43
24F-E15	HF/HF	2400	1600	500	500	215	1.9	1.8	0.95	1200	375	190	1.6	1.5	0.79	975	1500	0.43
		1 0400	1750	740	650	300	1.8	1.7	0.90	1450	650	260	1.6	1.5	0.79	1100	1500	0.55
24F-V1	SP/SP	2400	1100	140														
24F-V1 24F-V4 (4)	SP/SP SP/SP	2400	1650	740	650	210	1.8	1.7	0.90	1350	470	230	1.6	1.5	0.79	975	1350	0.55

Glulam - Design Example Problem

2. Calculate C_V

5.3.6 Volume Factor, Cv

When structural glued laminated timber members are loaded in bending about the x-x axis, the reference bending design values, F_{bx}^+ , and F_{bx}^- , shall be multiplied by the following volume factor:

$$C_{v} = \left(\frac{21}{L}\right)^{1/x} \left(\frac{12}{d}\right)^{1/x} \left(\frac{5.125}{b}\right)^{1/x} \le 1.0$$
 (5.3-1)

where:

- L = length of bending member between points of zero moment, ft
- d = depth of bending member, in.
- $\label{eq:b} \begin{array}{l} {\rm s} = \mbox{width (breadth) of bending member.} \\ {\rm For multiple piece width layups, } {\rm b} = \mbox{width of widest piece used in the layup.} \\ {\rm Thus, } {\rm b} \leq 10.75". \end{array}$
- x = 20 for Southern Pine
- x = 10 for all other species

$$\frac{C_{\mathbf{v}}}{C_{\mathbf{v}}} = \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix}^{1/x} \begin{pmatrix} 12 \\ z_{3} \end{pmatrix}^{1/x} \begin{pmatrix} 5.125 \\ 6 \end{pmatrix}^{1/x} \qquad \begin{array}{c} x = 10 \\ L = 30' \\ d = 27'' \\ h = 5.125' \end{array}$$

University of Michigan, TCAUP

Glulam - Design Example Problem

Table 3.3.3 Effective Length, $\ell_{ m o}$,	, for Bending Memt	pers		12.
Cantilever ¹	when $\ell_u/d < 7$	terne the second sec	when ℓ_u	$/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =1.33 $\ell_{\rm u}$		ℓ _e =0.90 €	$\ell_u + 3d$
Concentrated load at unsupported end	ℓ_{e} =1.87 ℓ_{u}		ℓ _e =1.44 €	$\ell_u + 3d$
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when ℓ_u	$/d \ge 7$
Uniformly distributed load	$\ell_e=2.06 \ \ell_u$	in the second	ℓ _e =1.63 ℓ	$\mathcal{L}_{u} + 3d$
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$		ℓ _e =1.37 ℓ	$\mathcal{L}_{u} + 3d$
Concentrated load at center with lateral support at center		ℓ_{e} =1.11 ℓ_{u}	22. a.s.	

3. Calculate C_L

use lesser of C_V or C_I

 $\frac{C_{L}}{R_{B}} = \sqrt{\frac{l_{e} d}{b^{2}}} = \sqrt{\frac{197.8(27)}{5.1252}} = 14.33$ $F_{bE} = \frac{1.2 E_{y} \min}{R_{B}^{2}} = \frac{1.2(790000)}{14.33^{2}} = 1688.6 \text{ psi}$ $F_{b}^{*} = 2000 (C_{b}) = 2000$ $C_{L} = 0.739 < 0.889 = C_{V} \therefore USE C_{L}$ NOT C_{V}

University of Michigan, TCAUP

Wood

Slide 31 of 33

Glulam - Design Example Problem

- 4. Estimate DL
- 5. Calculate moment
- Determine actual bending stress fb = M/Sx
- 7. Determine F'b
- 8. Check bending stress, revise if required

$$W_{SELF} = D \frac{A}{144} = 31.2 \frac{138.4}{144} = 30 PLF$$

$$M = \frac{PL}{4} + \frac{\omega f^2}{8} = \frac{2750(30)}{4} + \frac{30(30)^2}{8}$$
$$M = \frac{13125 + 3374}{4} = \frac{76499}{4}^{1.5}$$

$$f_b = \frac{M}{S_X} = \frac{76499(12)}{622.7} = 1474 \text{ psi}$$

F = 1478 > 1474 = F ... pass

