


```
Peter von Buelow
```

University of Michigan, TCAUP

Slide 1 of 58

General 1.0

Building Classification

- Risk catagory
- Used for Importance factor

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, <i>I_s</i>	Ice Importance Factor— Thickness, I _i	Ice Importance Factor—Wind, Iw	Seismic Importance Factor, I _e
I	0.80	0.80	1.00	1.00
П	1.00	1.00	1.00	1.00
Ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads

Risk Category
I
п
ш
IV

Buildings and other structures containing toxic, mgniy toxic, or explosive substances shall be eligible for classification to a lower Risk Category if it can be demonstrated to the satisfaction of the Authority Having Jurisdiction by a hazard assessment as described in Section 1.5.3 that ar elease of the substances is commensurate with the risk associated with that Risk Category.

General 1.0

Risk Category I

- usually unoccupied
- low risk to public
- barns, storage, gatehouse

Risk Category II

- vast majority of structures
- residential, commercial, industrial
- "all others" not in I. III. or IV

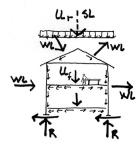
Risk Category III

- large number of people together •
- theaters, lecture halls .
- contain persons not mobile
- elementary schools, prisons, health-care •
- importance to community, would disrupt life
- power stations, water treatment, telecommunications

Risk Category III

- buildings needed in an emergency
- police, fire stations, hospitals. emergency communications
- extremely hazardous material

```
Peter von Buelow
```


University of Michigan, TCAUP

Slide 3 of 58

Combinations of Loads - Ch. 2

Strength and Allowable Stress Design

- · Each combination separately
- · Combine to give worst affect

2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN

- 1.4D $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$ 2.
- 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$ 4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$

5. 0.9D + 1.0W

2.2 SYMBOLS

- A_k = load or load effect arising from extraordinary event A
- \hat{D} = dead load D_i = weight of ice
- = earthquake load E
- F = load caused by fluids with well-defined pressures and maximum heights F_a = flood load
- H^{a} = load due to lateral earth pressure, ground water pressure, or pressure of bulk materials L = live load
- $L_r = \text{roof live load}$
- \dot{N} = notional load for structural integrity, Section 1.4
- R = rain load
- S = snow load T = cumulative effect of self-straining forces and effects arising from contraction or expansion resulting from environmental or operational temperature changes, shrinkage, moisture changes, creep in component materials, movement caused by differential settlement, or combinations thereof W = wind load
- W_i = wind-on-ice determined in accordance with Chapter 10

2.4 LOAD COMBINATIONS FOR ALLOWABLE STRESS DESIGN

- 1. D
- 2. D + L
- 3. $D + (L_r \text{ or } S \text{ or } R)$
- 4. $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$
- 5. D + (0.6W)
- 6. $D + 0.75L + 0.75(0.6W) + 0.75(L_r \text{ or } S \text{ or } R)$ 7. 0.6D + 0.6W

н

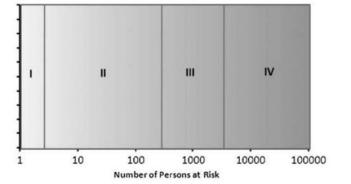


FIGURE C1.5-1 Approximate Relationship between Number of

Lives Placed at Risk by a Failure and Occupancy Category

Dead Loads - Ch. 3

Weight of material

• Table C3.1-1 in commentary

	Load		Load
Component	(psf)	C amponent	(psf)
CEILINGS		Decking, 2-in. wood (Douglas fir)	5
Acoustical Fiber Board	1	Decking, 3-in. wood (Douglas fir)	8
Gypsum board (per mm thickness)	0.55	Fiberboard, 1/2-in.	0.75
Mechanical duct allowance	4	Gypsum sheathing, 1/2-in.	2
Plaster on tile or concrete	5	Insulation, roof boards (per inch thickness)	
Plaster on wood lath	8	Cellular glass	0.7
Suspended steel channel system	2	Fibrous glass	1.1
Suspended metal lath and cement plaster	15	Fiberboard	1.5
Suspended metal lath and gypsum plaster	10	Perlite	0.8
Wood furring suspension system	2.5	Polystyrene foam	0.2
COVERINGS, ROOF, AND WALL		Urethane foam with skin	0.5
Asbestos-cement shingles	4	Plywood (per 1/8-in. thickness)	0.4
Asphalt shingles	2	Rigid insulation, 1/2-in.	0.75
Cement tile	16	Skylight, metal frame, 3/8-in. wire glass	8
Clay tile (for montar add 10 psf)		Slate, 3/16-in.	7
Book tile, 2-in.	12	Slate, 1/4-in.	10
Book tile, 3-in.	20	Waterproofing membranes:	
Ludowici	10	Bituminous, gravel-covered	5.5
Roman	12	Bituminous, smooth surface	1.5
Spanish	19	Liquid applied	1
Composition:		Single-ply, sheet	0.7
Three-ply ready roofing	1	Wood sheathing (per inch thickness)	3
Four-ply felt and gravel	5.5	Wood shingles	3
Five-ply felt and gravel	6	FLOOR FILL	
Copper or tin	1	Cinder concrete, per inch	9
Corrugated asbestos-cement roofing	4	Lightweight concrete, per inch	8
Deck, metal, 20 gage	2.5	Sand, per inch	8
Deck, metal, 18 gage	3	Stone concrete, per inch	12

Peter von Buelow

University of Michigan, TCAUP

Slide 5 of 58

Dead Loads - Ch. 3

Weight of material

- Table C3.1-2 in commentary
- Raw materials
- · Also Steel manual

Material	Load (lb/ft ³)	Material	Load (lb/ft ³
Aluminum	170		linvit
	170	Earth (submerged)	80
Bituminous products	81	Clay Soil	70
Asphaltum	135	River mud	90
Graphite Paraffin	56		60
Parattin Petroleum, crude	55	Sand or gravel Sand or gravel and clay	65
Petroleum, refined	50	Glass	160
Petroleum, renned Petroleum, benzine	46	Gravel, dry	100
Petroleum, gasoline	40	Gypsum, loose	70
Pitch	42 69		50
Tar	75	Gypsum, wallboard Ice	57
Brass	526	Iron	57
Brass	552	Cast	450
	144		4.50
Cast-stone masonry (cement, stone, sand)	90	Wrought Lead	710
Cement, portland, loose Ceramic tile	150	Lime	/10
Charcoal	130		32
Cinder fill	57	Hydrated, loose	45
	45	Hydrated, compacted	43
Cinders, dry, in bulk	45	Masonry, Ashlar stone	165
Coal	60	Granite	
Anthracite, piled	52 47	Limestone, crystalline	165
Bituminous, piled	47	Limestone, oolitic	135
Lignite, piled	23	Marble	1/3
Peat, dry, piled	23	Sandstone	144
Concrete, plain Cinder	108	Masonry, brick	130
	108	Hard (low absorbtion)	1150
Expanded-slag aggregate	90	Medium (medium absorbtion)	100
Haydite (burned-clay aggregate)		Soft (high absorbtion)	100
Slag	132	Masonry, concrete*	100
Stone (including gravel)	144	Lightweight units	105
Vermiculite and perlite aggregate, non-load-bearing	25-50	Medium weight units	125
Other light aggregate, load-bearing	70-105	Normal weight units	135
Concrete, reinforced		Masonry grout	140
Cinder	111	Masonry, rubble stone	
Slag	138	Granite	153
Stone (including gravel)	150	Limestone, crystalline	147
Copper	556	Limestone, oolitic	
Cork, compressed	14	Marble	156
Earth (not submerged)		Sandstone	137
Clay, dry	63	Mortar, cement or lime	130
Clay, damp	110	Particleboard	45
Clay and gravel, dry	100	Plywood	36
Silt, moist, loose	78	Riprap (Not submerged)	
Silt, moist, packed	96	Limestone	83
Silt, flowing	108	Sandstone	90
Sand and gravel, dry, loose	100	Sand	
Sand and gravel, dry, packed	110	Clean and dry	90
Sand and gravel, wet	120	River, dry	100

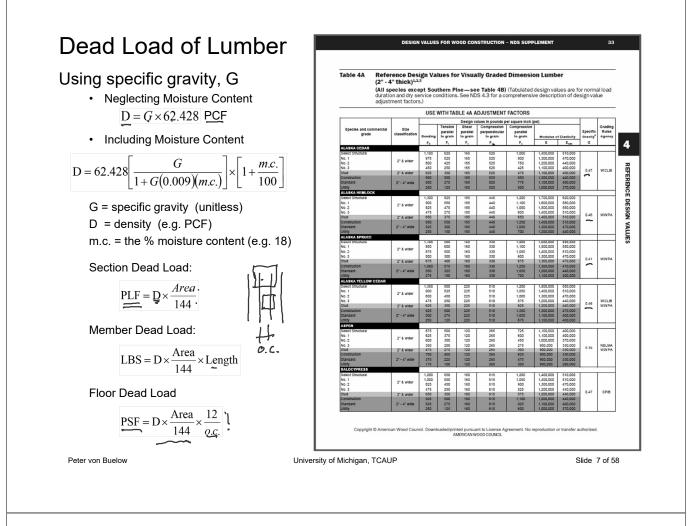


Table 4.3-1 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads

Yes (4.7.2) Yes (4.7.2) No (4.7.5)

No (4.7.5) No (4.7.5) No (4.7.5) No (4.7.5) No (4.7.5) No (4.7.5)

No (4.7.5)

No (4.7.5) Yes (4.7.2)

Yes (4.7.2)

Yes (4.7.2)

No (4.7.5)

Yes (4.7.2) Yes (4.7.2)

No (4.7.4)

No (4.11.1)

No (4.11.1)

Yes (4.7.2) Yes (4.7.2) Yes (4.7.2)

Yes (4.7.2) No (4.7.3) Yes (4.7.2)

No (4.7.3) No (4.7.3)

Yes (4.7.2) Yes (4.7.2) Yes (4.7.2)

50 (2.40) 100 (4.79) 150 (7.18)

60,287) 100 (4.79) 100 (4.79) 100 (4.79) 150 (7.18) 100 (4.79)

60 (2.87)

100 (4.79)

100 (4.79) 40 (1.92)

40 (1.92) See Sec. 4.10.2 See Sec. 4.5.1

40 (1.92)

60 (2.87)

60 (2.87) 40 (1.92) 80 (3.83)

60 (2.87) 150 (7.18) 80 (3.83)

125 (6.00) 250 (11.97)

100 (4.79 50 (2.40) 80 (3.83)

Same as occupancy s except as indicated 100 (4.79)

100 (4.79) 1.5 times the live load for the area served. Not required to exceed 100 psf (4.79 kN/m²) 40 (1.92)

ы

and decks

First floor Other floors

tands, grandstands

and arenas with fixed seats d to the floor)

> plate constru 1 in. (25 mm

ion 4.10)

cks and buses trails and Guardrails ib bars ads (See Section 4.11) licopter takeoff weight 3,000 (13.35 kN) or less

opter takeoff weight mor 100 lb (13.35 kN)

e first floor

ccupancy bies and first-floor corridors

above first floor

rooms shall be designed ds based on anticipated Multiple-Story Live Load Reduction Parmitted? (Sec. No.)

> Yes (4.7.2) Yes (4.7.2) No (4.7.5)

No (4.7.5) No (4.7.5) No (4.7.5) No (4.7.5) No (4.7.5) No (4.7.5)

No (4.7.5)

No (4.7.5) Yes (4.7.2)

Yes (4.7.2)

Yes (4.7.2)

No (4.7.5)

Yes (4.7.2) Yes (4.7.2)

Yes (4.7.4)

Yes (4.7.2) Yes (4.7.2) Yes (4.7.2)

Yes (4.7.2) Yes (4.7.3) Yes (4.7.2)

Yes (4.7.3) Yes (4.7.3)

Yes (4.7.2) Yes (4.7.2) Yes (4.7.2) Concentrated Also See Ib (kN) Section

4.14

4.14

2,000 (8.90) 2,000 (8.90)

300 (1.33)

200 (1.33)

200 (0.89)

See Sec. 4.5.4

See Sec. 4.10.1 See Sec. 4.10.2 See Sec. 4.5.1 See Sec. 4.5.2

See Sec. 4.11.2

See Sec. 4.11.2

1,000 (4.45) 1,000 (4.45) 1,000 (4.45)

1,000 (4.45) 1,000 (4.45) 1.000 (4.45) 4.13

2,000 (8.90) 3,000 (13.35)

Live Loads - Ch. 4

Concentrated

- 200 to 8000 LBS by occupancy over 2.5 FT x 2.5 FT area
- Handrail 200 LBS

Floor

- By occupancy
- Reduction with area > 400 SF
- Table 4.3-1

4.7.2 Reduction in Uniform Live Loads. Subject to the limitations of Sections 4.7.3 through 4.7.6, members for which a value of $K_{LL}A_T$ is 400 ft² (37.16 m²) or more are permitted to be designed for a reduced live load in accordance with the following formula:

$$L = L_o \left(0.25 + \frac{15}{\sqrt{K_{IL}A_T}} \right)$$
(4.7-1)

Roof

- Minimum Lr between 12 PSF and 20 PSF
- Lr = 20 R1 R2
- See 4.8.1

University of Michigan, TCAUP

14

STANDARD ASCE/SEI 7-16

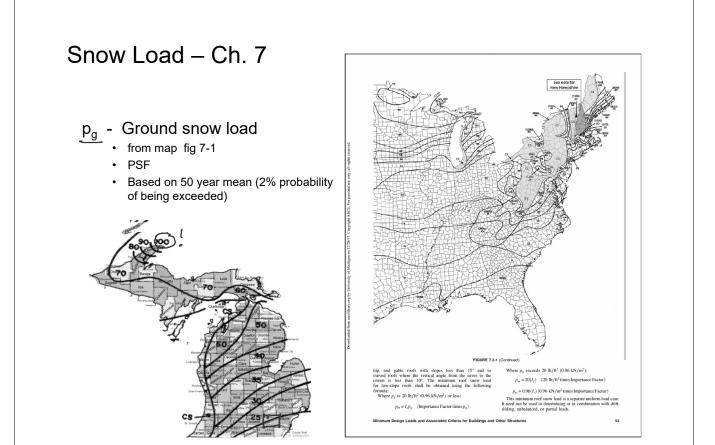
Live Loads - Ch. 4

Roof

- Minimum L_r between 12 PSF and 20 PSF
- $L_r = 20 R_1 R_2$
- See 4.9.1

$$\begin{array}{ll} 1 & \mbox{for } A_t \leq 200 \ \mbox{ft}^2(18.58 \ \mbox{m}^2) \\ R_1 = & 1.2 - 0.001 A_t & \mbox{for } 200 \ \mbox{ft}^2 < A_t < 600 \ \mbox{ft}^2 \\ & \box{0.6} & \mbox{for } \underline{A_t} \geq \underline{600} \ \mbox{ft}^2(55.74 \ \mbox{m}^2) \\ \end{array}$$

where A_t = tributary area in ft² (m²) supported by any structural member and


$$\begin{array}{ll} 1 & \mbox{for } F \leq 4 \\ R_2 = & 1.2 - 0.05 \ F & \mbox{for } 4 < F < 12 \\ 0.6 & \mbox{for } F \geq 12 \end{array}$$

where, for a pitched roof, F = number of inches of rise per ft. for an arch or dome, F = rise-to-span ratio multiplied by 32.

Peter von Buelow

University of Michigan, TCAUP

Slide 9 of 58

Snow Load – Ch. 7

p_f - flat roof snow load p_f = 0.7 <u>Ce Ct Is</u> pg

• Eq. 7.3-1

Minimum for Low Slope Roofs, pm

- Minimum where $p_q \leq 20$ $p_m = I_s p_q PSF$
- Minimum where $p_q > 20$ $p_m = I_s 20 PSF$

Low Slope Roofs

• Monoslope, hip or gable < 15°

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, <i>I_s</i>	Ice Importance Factor— Thickness, I _i	lce Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
→ I	0.80	0.80	1.00	1.00
п	1.00	1.00	1.00	1.00
ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

Peter von Buelow

7.3 FLAT ROOF SNOW LOADS, pf

The flat roof snow load, p_f , shall be calculated in lb/ft² (kN/m²) using the following formula:

$$p_f = 0.7C_e C_t I_s p_g$$
 (7.3-1)

7.3.1 Exposure Factor, C_e The value for C_e shall be determined from Table 7-2.

7.3.2 Thermal Factor, C_t The value for C_t shall be determined from Table 7-3.

7.3.3 Importance Factor, Is

The value for I_s shall be determined from Table 1.5-2 based on the Risk Category from Table 1.5-1.

7.3.4 Minimum Snow Load for Low-Slope Roofs, p_m A minimum roof snow load, p_m , shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. The minimum roof snow load for low-slope roofs shall be obtained using the following formula:

Where p_g is 20 lb/ft² (0.96 kN/m²) or less:

 $p_m = I_s p_g$ (Importance Factor times p_g)

Where p_g exceeds 20 lb/ft² (0.96 kN/m²):

 $p_m = 20 (I_s)$ (20 lb/ft² times Importance Factor)

This minimum roof snow load is a separate uniform load case. It need not be used in determining

Slide 11 of 58

Snow Load – Ch. 7

C_e – Exposure Factor

• Table 7-2

Table 7-2 Exposure Factor, Ce

University of Michigan, TCAUP

	Exposure of Roof ^a			
Terrain Category	Fully Exposed	Partially Exposed	Sheltered	
• B (see Section 26.7)	0.9	1.0	1.2	
C (see Section 26.7)	0.9	1.0	1.1	
D (see Section 26.7)	0.8	0.9	1.0	
Above the treeline in windswept mountainous areas.	0.7	0.8	N/A	
In Alaska, in areas where trees do not exist within a 2-mile (3-km) radius of the site.	0.7	0.8	N/A	

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.

^aDefinitions: Partially Exposed: All roofs except as indicated in the following text. Fully Exposed: Roofs exposed on all sides with no shelter^b afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load (h_b), or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.

^bObstructions within a distance of $10h_o$ provide "shelter," where h_o is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

Exposure Categories

- Commentary 26
- Used for wind and snow

EXPOSURE 8 URBAN AREA WITH NUMEROUS CLOSELY SPACED OBSTRUCTIONS HAVING THE SIZE OF SINGLE-FAMILY DWELLINGS OR LARGER. FOR ALL STRUCTURES SHOWN, TERNARIN DEPRESENTATIVE OF SURFACE ROUGHNESS CATEGORY B EXTENDS MORE THAN TEN TIMES THE HEIGHT OF THE STRUCTURE OR 600 M, WHICHEVER IS GREATER, IN THE UPWIND DIRECTION

Peter von Buelow

University of Michigan, TCAUP

Slide 13 of 58

EXPOSURE B STRUCTURES IN THE FOREGROUND ARE LOCATED IN EXPOSURE B. STRUCTURES IN THE CENTER TOP OF THE PHOTOGRAPH ADJACENT TO THE CLEFT, WHICH IS OREATER THAN 200 M IN LENGTH, ARE LOCATED IN EXPOSURE C WHEN WIND COMES FROM THE LEFT OVER THE CLEARING (SEE FOURCE C6-8)

EXPOSURE C FLAT OPEN GRASSLAND WITH SCATTERED OBSTRUCTIONS HAVING HEIGHTS GENERALLY LESS THAN 30 FT

OPENTERDAIN WITH SCATTERED 085TRUCTIONS HAWING HEIGHTS GENERALLY LESS THAN 30 FT FOR MOST WIND DIRECTIONS, ALL -STORY STRUCTURES WITH A MEAN PROF. HEIGHT LESS THAN 30 FT I NTE HOTOGRAPH ARE LESS THAN 1500 FT OR TEN TIMES THE HEIGHT OF THE STRUCTURE, WHICHEVER IS GREATER, FROM AN OPEN FIELD THAT PREVENTS THE 116F OR FROM SUB R.

A BUILDING AT THE SHORELINE (EXCLUDING SHORELINES IN HURRICAME-PRONE REGIONS) WITH WIND FLOWING OVER OPEN WATER FOR A DISTANCE OF AT LEAST 1 MILE. SHORELINES IN EXPOSURE D INCLUDE NILAND WATERWAYS, THE GREAT LAKES, AND COASTLA AREAS OF CALIFORMA, OPEGON, WASHINGTON, AND ALASISA

Snow Load – Ch. 7

Ct - Thermal Factor Table 7.3-2

I_s – Importance Factor

Table 1.5-2

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, I _s	Ice Importance Factor— Thickness, I _i	lce Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
I	0.80	0.80	1.00	1.00
п	1.00	1.00	1.00	1.00
ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

Peter von Buelow

Table 7.3-2 Thermal Factor, C_t

Thermal Condition ^a	Ct
All structures except as indicated below	1.0
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-value)	1.1
between the ventilated space and the heated space exceeds $25^{\circ}F \times h \times ft^2/Btu$ (4.4 K × m ² /W)	
Unheated and open air structures	1.2
Freezer building	$\frac{1.2}{1.3}$ 0.85
Continuously heated greenhouses ^b with a roof having a thermal resistance (R-value) less than $2.0^{\circ}F \times h \times ft^2/Btu$ (0.4 K × m ² /W)	0.85

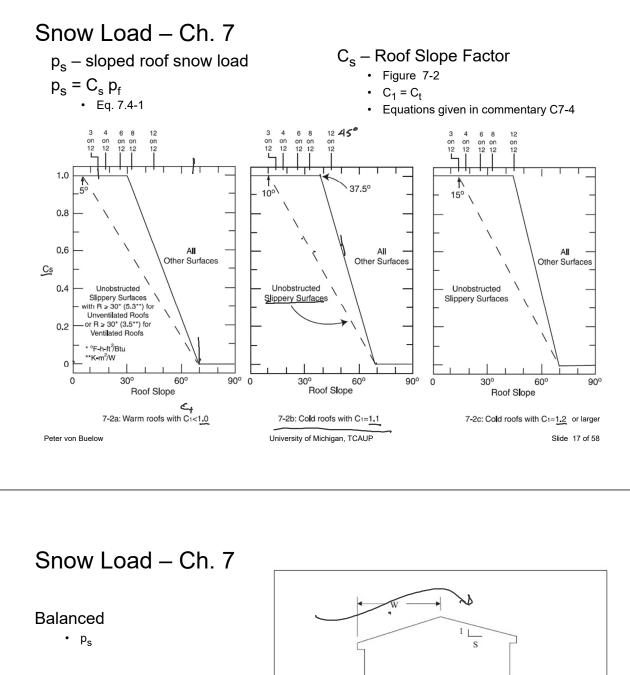
^aThese conditions shall be representative of the anticipated conditions during

winters for the life of the structure. ^bGreenhouses with a constantly maintained interior temperature of 50°F (10°C) or more at any point 3 ft (0.9 m) above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure.

University of Michigan, TCAUP

Slide 15 of 58

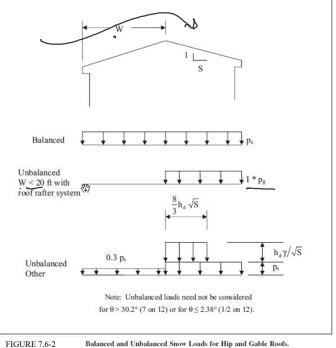
Snow Load - Ch. 7

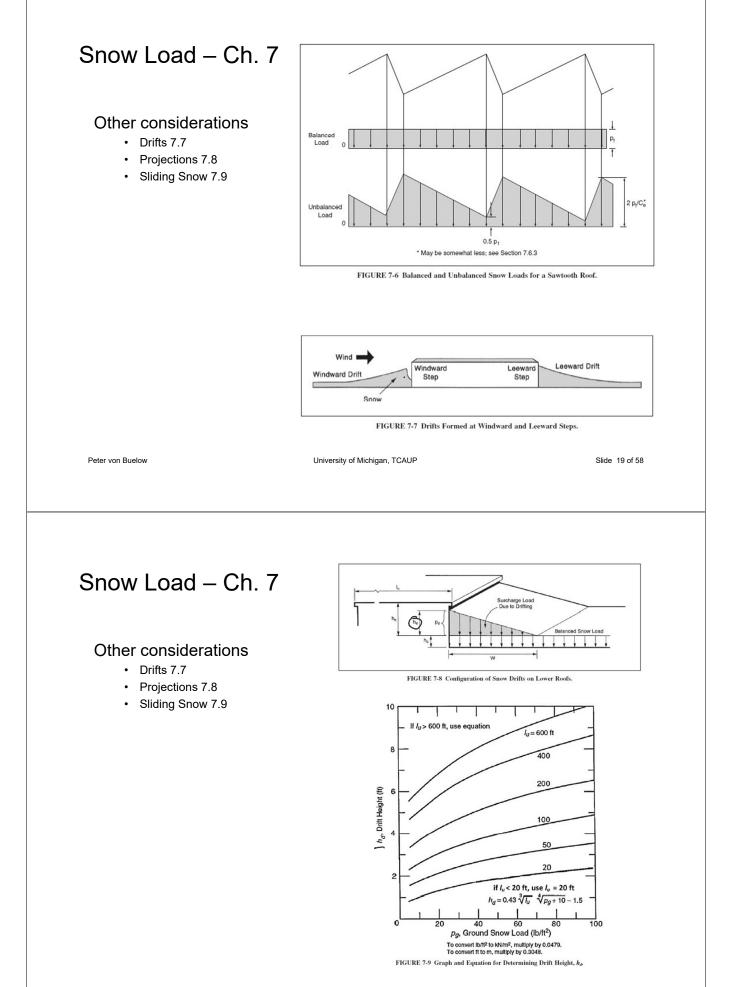

- $\frac{p_s}{p_s} = \frac{1}{|C_s|} p_f \leftarrow \frac{1}{|C_s|} p_$
- C_s Roof Slope Factor

 - $\underline{C}_1 = \underline{C}_t$
 - Equations given in commentary C7.4

p_s is a projected load (based on the horizontal plan area.

It is calculated using roof pitch and insulation factor, Ct


For W ≤ 20FT


• I_s x p_g

For W > 20FT • See Fig. 7.6-2

Unbalanced Gable Roof Loads

- Not for F > 7 on 12 (30.2°)
- Not for F < ¹/₂ on 12 (2.38°)

Snow Load – Ch. 7

Snow Drifts

• Drifts 7-7

Peter von Buelow

University of Michigan, TCAUP

Slide 21 of 48


Snow Load – Ch. 7

Slope $24 \text{ on } 12 = 63.4^{\circ}$

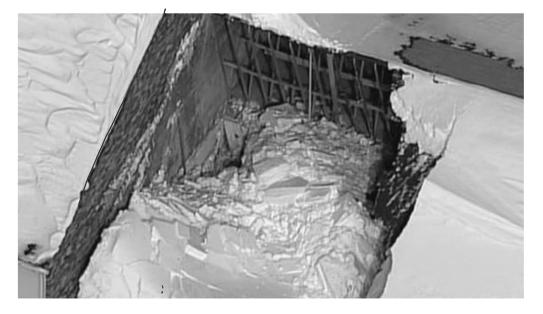
Snow Load – Ch. 7

• Drifts 7-7

Peter von Buelow

University of Michigan, TCAUP

Slide 23 of 48



University of Michigan, TCAUP

Snow Load - Ch. 7

· roof failure due to drift load

Sutton, Massachusetts

Peter von Buelow

University of Michigan, TCAUP

Slide 25 of 48

Other Loads

Flood, Soil and Hydrostatic

• Ch. 5

Tsunami

• Ch. 6

Rain

• Ch. 8

Ice

• Ch. 10

Seismic

• Ch. 11 - 23

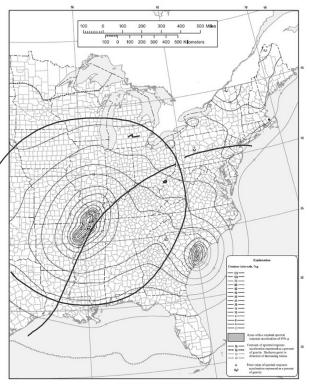
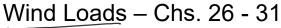
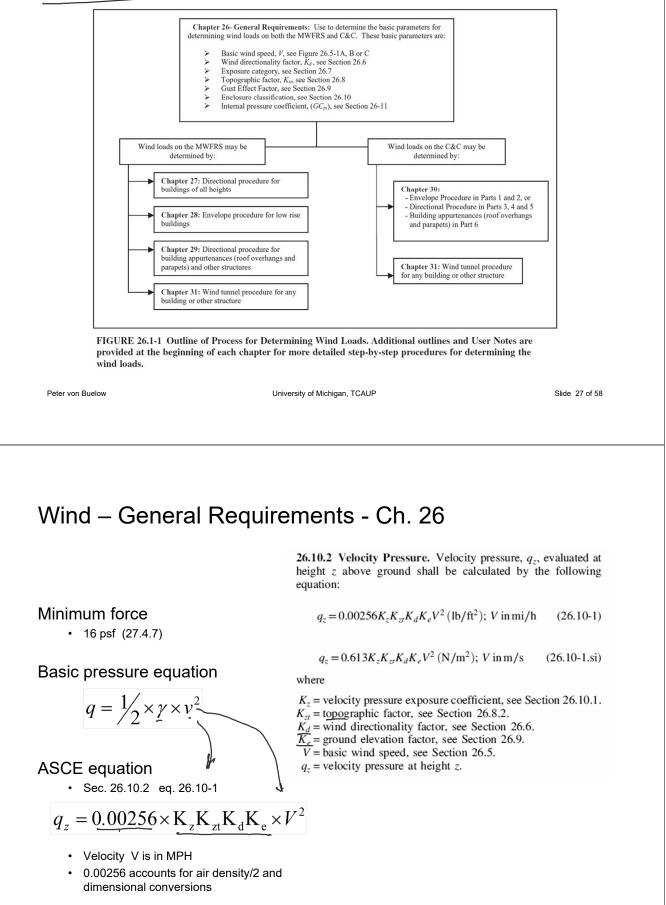
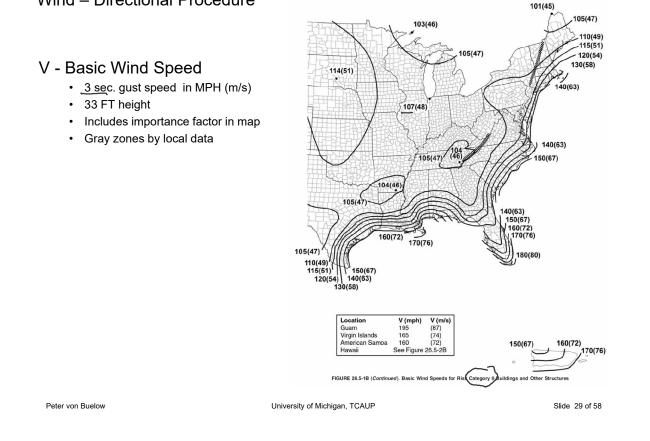





FIGURE 22-2 (Continued)

Wind – Directional Procedure

Wind - General Requirements - Ch. 26

Kz – Velocity Pressure Exposure Coefficient

- · Accounts for wind speed increase with height
- Kz is at elevation z
- Kh is at mean roof height (average roof height)
- Based on Exposure Categories B, C, D •

Table 26.10-1 Velocity Pressure Exposure Coefficients, K_h and K_z

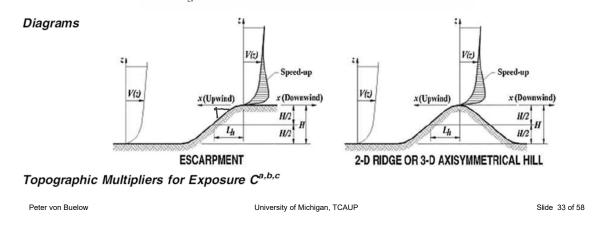
Height above Ground Level, z			Exposure	
ft	m	<u> </u>	c	D
0-15	0-4.6	0.57 (0.70) ^a	0.85	1.03
20	6.1	$0.62 (0.70)^a$	0.90	1.08
25	7.6	$0.66 (0.70)^a$	0.94	1.12
30	9.1	0.70	0.98	1.16
40	12.2	0.76	1.04	1.22
50	15.2	0.81	1.09	1.27
60	18.0	0.85	1.13	1.31
70	21.3	0.89	1.17	1.34
80	24.4	0.93	1.21	1.38
90	27.4	0.96	1.24	1.40
100	30.5	0.99	1.26	1.43
120	36.6	1.04	1.31	1.48
140	42.7	1.09	1.36	1.52
160	48.8	1.13	1.39	1.55
180	54.9	1.17	1.43	1.58
200	61.0	1.20	1.46	1.61
250	76.2	1.28	1.53	1.68
300	91.4	1.35	1.59	1.73
350	106.7	1.41	1.64	1.78
400	121.9	1.47	1.69	1.82
450	137.2	1.52	1.73	1.86
500	152.4	1.56	1.77	1.89

^aUse 0.70 in Chapter 28, Exposure B, when z < 30 ft (9.1 m).

1. The velocity pressure exposure coefficient K_z may be determined from The velocity pressure exposure constraint t_z may be determined nom the following formula: For 15 ft (4.6 m) ≤ z ≤ z_g K_z = 2.01 (z/z_g)^{2/α} For z < 15 ft (4.6 m) K_z = 2.01 (15/z_g)^{2/α}
 α and z_g are tabulated in Table 26.11-1.
 Linear interpolation for intermediate values of height z is acceptable.

Exposure categories are defined in Section 26.7.

Wind – General Requirements - Ch. 26


Kzt – Topographic Factor

• Accounts for wind speed increase over hilltop

26.8.2 Topographic Factor. The wind speed-up effect shall be included in the calculation of design wind loads by using the factor K_{zt} :

$$K_{zt} = (1 + K_1 K_2 K_3)^2 \tag{26.8-1}$$

where K_1 , K_2 , and K_3 are given in Fig. 26.8-1. If site conditions and locations of buildings and other structures do not meet all the conditions specified in Section 26.8.1, then $K_{zt} = 1.0$.

Wind - General Requirements - Ch. 26

Kzt – Topographic Factor

- Accounts for wind speed increase over hilltop
- All five of the following conditions need to be met in order to use Kzt otherwise Kzt = 1.0
 - 1. The hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100 times the height of the topographic feature (100H) or 2 mi (3.22 km), whichever is less. This distance shall be measured horizontally from the point at which the height *H* of the hill, ridge, or escarpment is determined.
 - 2. The hill, ridge, or escarpment protrudes above the height of upwind terrain features within a 2-mi (3.22-km) radius in any quadrant by a factor of 2 or more.
 - 3. The building or other structure is located as shown in Fig. 26.8-1 in the upper one-half of a hill or ridge or near the crest of an escarpment.
 - 4. $H/L_h \ge 0.2$.
 - 5. *H* is greater than or equal to 15 ft (4.5 m) for Exposure C and D and 60 ft (18 m) for Exposure B.

Wind – Directional Procedure

K_d - Wind Directionality Factor

Table 26.6-1 Wind Directionality Factor, K_d

Structure Type	Directionality Factor K_d
Buildings	
Main Wind Force Resisting System	0.85
Components and Cladding	0.85
Arched Roofs	0.85
Circular Domes	1.0^{a}
Chimneys, Tanks, and Similar Structures	
Square	0.90
Hexagonal	0.95
Octagonal	1.0^a
Round	1.0^a
Solid Freestanding Walls, Roof Top	0.85
Equipment, and Solid Freestanding and	
Attached Signs	
Open Signs and Single-Plane Open Frames	0.85
Trussed Towers	
Triangular, square, or rectangular	0.85
All other cross sections	0.95

^aDirectionality factor $K_d = 0.95$ shall be permitted for round or octagonal structures with nonaxisymmetric structural systems.

Peter von Buelow

University of Michigan, TCAUP

Slide 35 of 58

Wind – Directional Procedure

26.9 GROUND ELEVATION FACTOR

K_e – Ground Elevation Factor

- · To adjust air density at high elevations
- · Ke may concervatively be taken as 1.0

The ground elevation factor to adjust for air density, K_e , shall be determined in accordance with Table 26.9-1. It is permitted to take $K_e = 1$ for all elevations.

Table 26.9-1 Ground Elevation Factor, Ke

Ground E	Ground Elevation		
ft	m	Factor <i>K</i> _e	
<0	<0	See note 2	
0	0	1.00	
1,000	305	0.96	
2,000	610	0.93	
3,000	914	0.90	
4,000	1,219	0.86	
5,000	1,524	0.83	
6,000	1,829	0.80	
>6,000	>1,829	See note 2	

Notes

1. The conservative approximation $K_e = 1.00$ is permitted in all cases. 2. The factor K_e shall be determined from the above table using interpo-

lation or from the following formula for all elevations: $K_e = e^{-0.000362 \epsilon_g}$ (z_g = ground elevation above sea level in ft).

 $K_e = e^{-0.000119 z_g}$ (z_g = ground elevation above sea level in m). 3. K_e is permitted to be take as 1.00 in all cases.

Wind – Directional Procedure Chapter 27

Design Pressure Equations

- Take shape of structure into account
- Interior pressure + or –
- Sec. 27.4.1 eq. 27.4-1 or -2 or -3

$$\underline{p} = \underline{q} \subseteq \underline{G} \subseteq \underline{C}_p - q_i (\underline{GC}_{pi})$$

- q windward = qz
- q leeward = qh
- Conservatively use qi = qh

27.3.1 Enclosed and Partially Enclosed Rigid and Flexible Buildings. Design wind pressures for the MWFRS of buildings of all heights in lb/ft^2 (N/m²), shall be determined by the following equation:

$$p = qGC_p - q_i(GC_{pi}) \tag{27.3-1}$$

where

- $q = q_z$ for windward walls evaluated at height z above the ground.
- $q = q_h$ for leeward walls, sidewalls, and roofs evaluated at height h.
- $q_i = q_h$ for windward walls, sidewalls, leeward walls, and roofs of enclosed buildings, and for negative internal pressure evaluation in partially enclosed buildings.
- $q_i = q_z$ for positive internal pressure evaluation in partially enclosed buildings where height z is defined as the level of the highest opening in the building that could affect the positive internal pressure. For buildings sited in wind-borne debris regions, glazing that is not impactresistant or protected with an impact-resistant covering shall be treated as an opening in accordance with Section 26.12.3. For positive internal pressure evaluation, q_i may conservatively be evaluated at height $h(q_i = q_h)$.
- G = gust-effect factor; see Section 26.11. For flexible buildings, G_f determined in accordance with Section 26.11.5 shall be substituted for G.
- C_p = external pressure coefficient from Figs. 27.3-1, 27.3-2, and 27.3-3.

 (GC_{pi}) = internal pressure coefficient from Table 26.13-1.

Both q and q_i shall be evaluated using exposure defined in Section 26.7.3. Pressure shall be applied simultaneously on windward and leeward walls and on roof surfaces as defined in Figs. 27.3-1, 27.3-2, and 27.3-3.

Peter von Buelow

University of Michigan, TCAUP

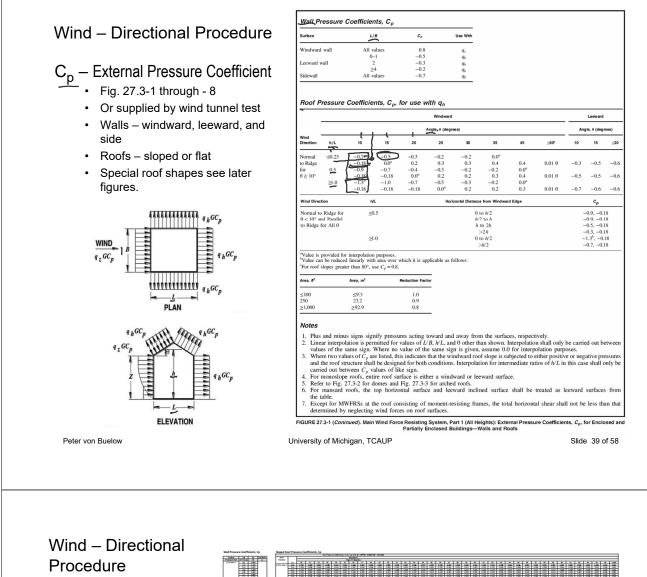
Slide 37 of 58

Wind – Directional Procedure

G – Gust Factor

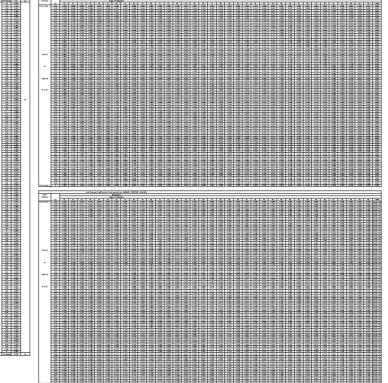
- Sec. 26.11
- Use 0.85

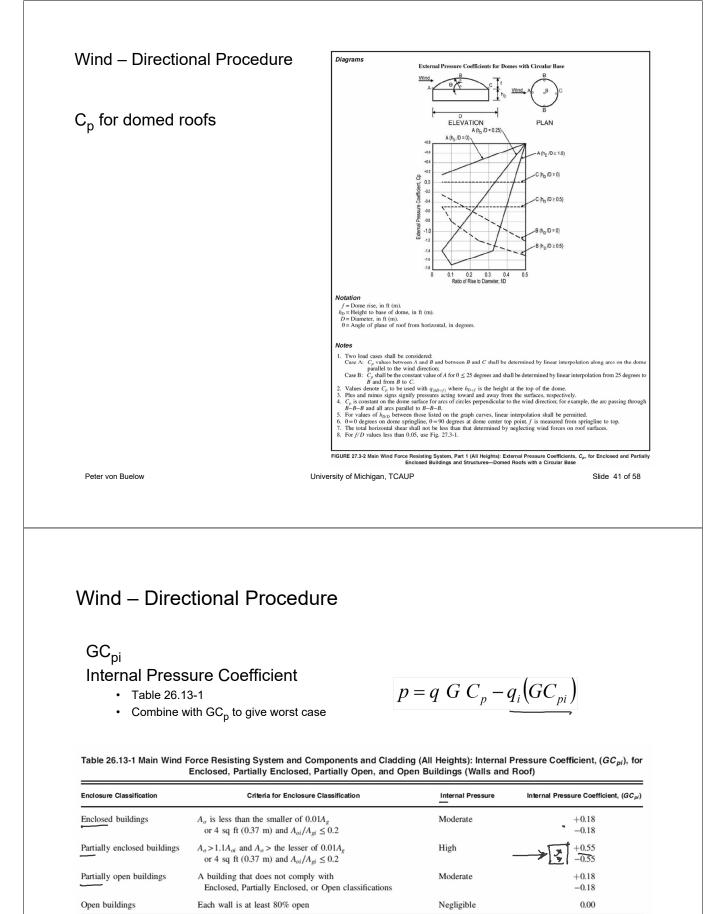
26.11.1 Gust-Effect Factor. The gust-effect factor for a rigid building or other structure is permitted to be taken as 0.85.


26.11.4 Rigid Buildings or Other Structures. For rigid buildings or other structures as defined in Section 26.2, the gust-effect factor shall be taken as 0.85 or calculated by this formula:

1

$$G = 0.925 \left(\frac{1 + 0.7g_{Q}I_{\bar{z}}Q}{1 + 0.7g_{v}I_{\bar{z}}} \right)$$
(26.11-6)


$$I_{\bar{z}} = c \left(\frac{33}{\bar{z}}\right)^{1/6}$$
(26.11-7)


$$z = c \left(\frac{10}{\bar{z}}\right)^{1/6}$$
 (26.11-7.si)

expanded C_p charts

- 1. walls
- 2. upper C_p
- 3. lower C

Notes
1. Plus and minus signs signify pressures acting toward and away from the internal surfaces, respectively.

2. Values of (GC_{pi}) shall be used with q_z or q_h as specified.

3. Two cases shall be considered to determine the critical load requirements for the appropriate condition:

a. A positive value of (GC_{pi}) applied to all internal surfaces, or

b. A negative value of (GC_{pi}) applied to all internal surfaces.

GC_{pi} Internal Pressure Coefficient

- Table 26.13-1
- Combine with GC_p to give worst case

GCpi ± 0.55

BUILDING, PARTIALLY ENCLOSED: A building that complies with both of the following conditions:

- The total area of openings in a wall that receives positive external pressure exceeds the sum of the areas of openings in the balance of the building envelope (walls and roof) by more than 10%.
- The total area of openings in a wall that receives positive external pressure exceeds 4 ft² (0.37 m²) or 1% of the area of that wall, whichever is smaller, and the percentage of openings in the balance of the building envelope does not exceed 20%.

These conditions are expressed by the following equations:

 $A_o > 1.10 A_{oi}$

$$A_a > 4 \text{ ft}^2(0.37 \text{ m}^2) \text{ or}$$

> 0.01A_g, whichever is smaller, and $A_{oi}/A_{gi} \leq 0.20$

where A_{ρ} and A_{ρ} are as defined for Open Building;

- A_{oi} = sum of the areas of openings in the building envelope (walls and roof) not including A_o , in ft² (m²); and
- A_{gi} = sum of the gross surface areas of the building envelope (walls and roof) not including A_{g} , in ft² (m²).

Peter von Buelow

GCpi ± 0.18

BUILDING, ENCLOSED: A building that has the total area of openings in each wall, that receives positive external pressure, less than or equal to 4 sq ft (0.37 m^2) or 1% of the area of that wall, whichever is smaller. This condition is expressed for each wall by the following equation:

 $A_o < 0.01 A_g$, or 4 sq ft (0.37 m²), whichever is smaller,

where A_o and A_g are as defined for Open Buildings.

GCpi ± 0.18

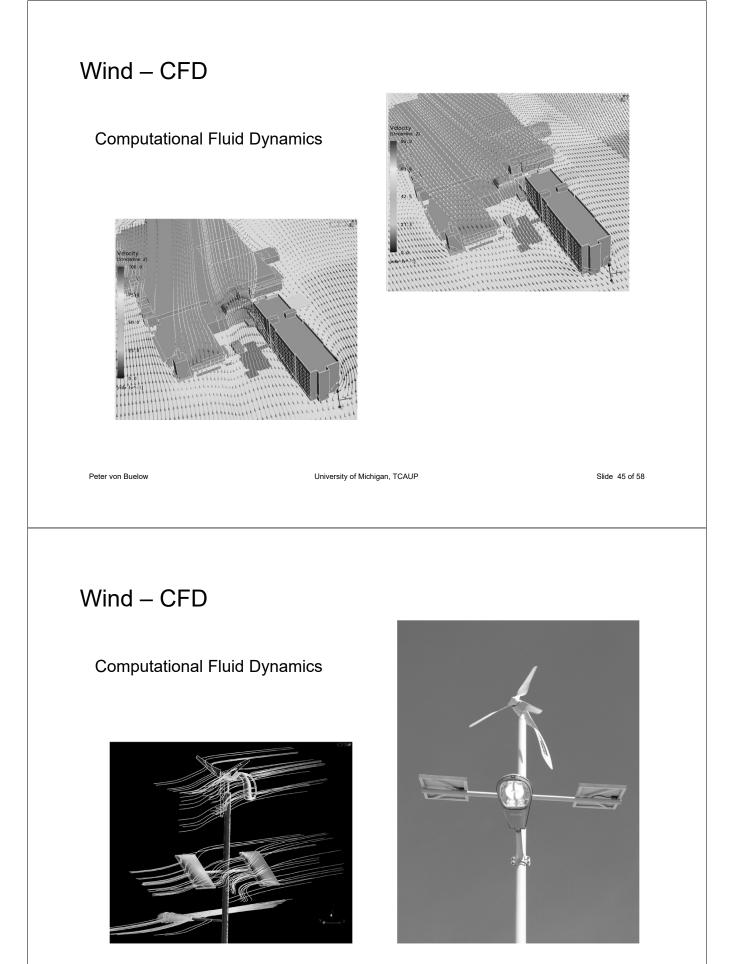
BUILDING, PARTIALLY OPEN: A building that does not comply with the requirements for open, partially enclosed, or enclosed buildings.

GCpi = 0.0

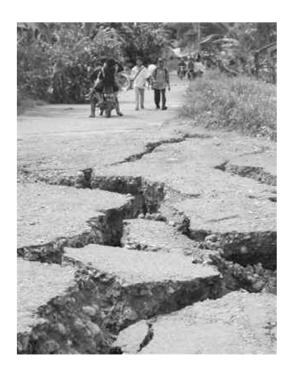
BUILDING, OPEN: A building that has each wall at least 80% open. This condition is expressed for each wall by the equation $A_o \ge 0.8A_g$, where

- A_o = total area of openings in a wall that receives positive external pressure, in ft² (m²); and
- A_g = the gross area of that wall in which A_o is identified, in ft² (m²).

Slide 43 of 58


Wind – wind tunnel testing

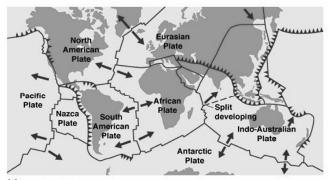
Boundary Layer Wind Tunnel



University of Michigan, TCAUP

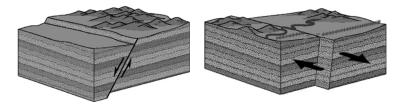
Earthquake Loads

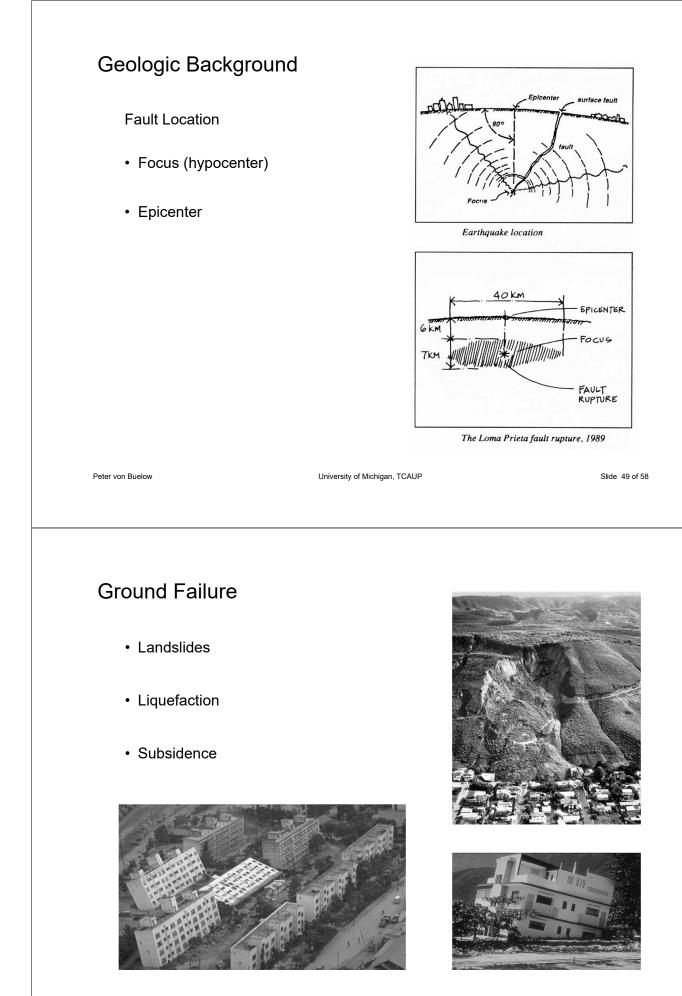
- Ground Motion
- Measurement
- Amplification
- Building Resistance

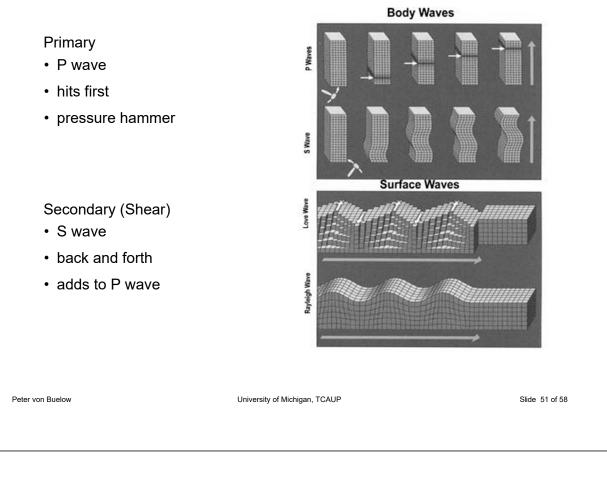

```
Peter von Buelow
```

University of Michigan, TCAUP

Slide 47 of 58


Geologic Background


Plate Tectonics


(a) ©1999 Addison Wesley Longman, Inc.

Geologic Faults

Ground Motion

Ground Motion

Acceleration

- Measured in g's (1 g = 32 ft/sec2)
- 0.001 g limit of perception
- 0.1 g weak construction fails
- 0.2 g hard to stand up
- 0.5 g very sever for earthquake

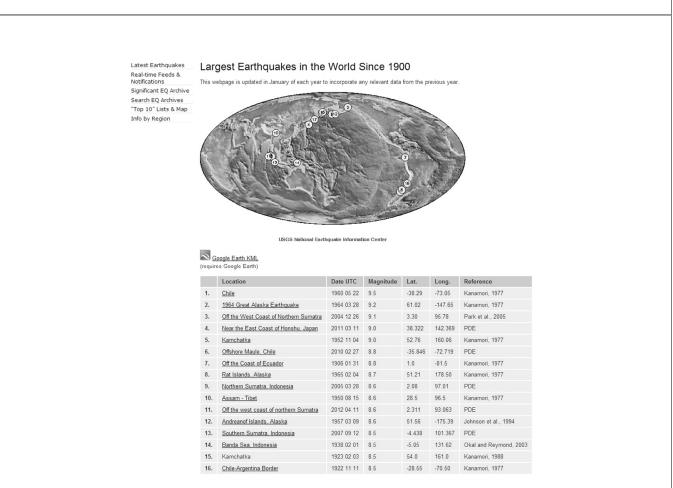
San Francisco, 1906 approximately 0.7g

Measurement

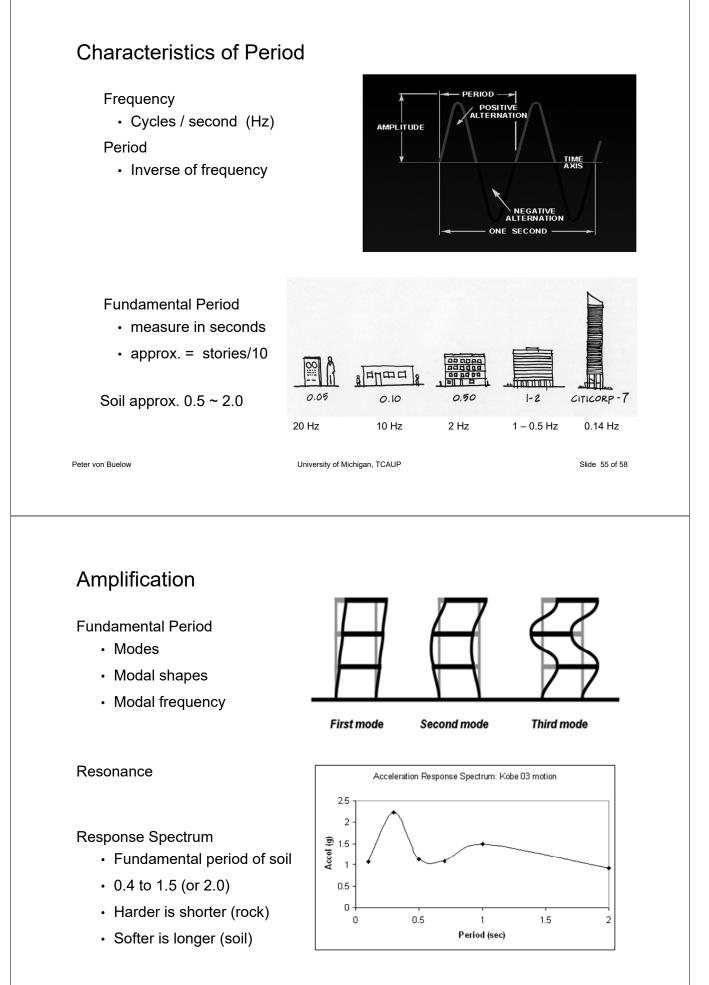
Magnitude

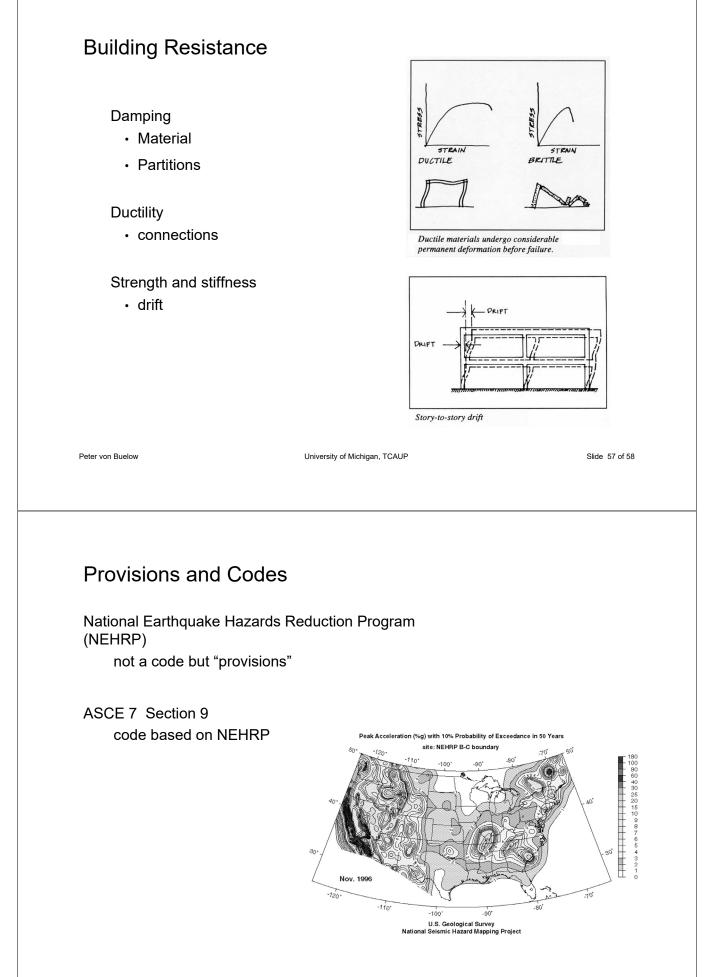
- Richter scale 0 to ~9.5
- · Size of the wave
- Accounts for attenuation
- Logarithmic (base 10)

Intensity


- Modified Mercalli scale I to XII
- · Relates to effects
- · Includes duration
- · Differs with location

Other measured parameters


- Peak Ground Acceleration (PGA)
- Design Basis Earthquake Ground Motion (DBEGM)


```
Peter von Buelow
```

Slide 53 of 58

University of Michigan, TCAUP

Load Combinations

Load Types

- Dead Load D
- Roof Live Load Lr
- Floor Live Load L
- Snow Load S
- Wind Load W
- Earthquake E

Load Combinations

Allowable Stress Design (ASD)

- D+L
- D + (Lr or S)
- D + 0.75 L + 0.75 (Lr or S)
- D + (W or 0.7 E)

Strength Design (LRFD)

- 1.4 D
- 1.2 D + 1.6 Lr + 0.5(Lr or S)
- 1.2 D + 1.6(Lr or S) + (L or 0.8W)
- 1.2 D + 1.6W + L + 0.5(Lr or S)
- 1.2 D + 1.6E + L + 0.2S

University of Michigan, TCAUP

llr! SL

Slide 59 of 58