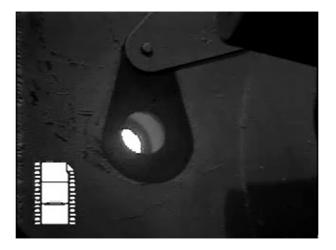


University of Michigan, Taubman College

NDS - 9.1 General

- 9.1.1 Scope Wood Structural Panels
 - Plywood
 - Oriented Strand Board (OSB)
 - Composite Panels

University of Michigan, Taubman College


Wood Structures

Slide 3 of 46

NDS - 9.1 General

9.1.1 Scope - Wood Structural Panels

- Plywood
- Oriented Strand Board (OSB)
- Composite Panels

NDS - 9.1 General

- 9.1.1 Scope Wood Structural Panels
 - Plywood
 - Oriented Strand Board (OSB)
 - Composite Panels

Plywood vs. OSB

Plywood higher impact resistance better moisture resistance more grades and types OSB stronger in shear more cost effective (cheaper) meets most code requirements

University of Michigan, Taubman College

Wood Structures

Slide 7 of 46

NDS Adjustment Factors

9.3.2 Load Duration Factor, C_D (ASD Only)

All reference strength design values (F_bS , F_tA , F_vt_v , $F_s(Ib/Q)$, F_cA) shall be multiplied by load duration factors, C_D , as specified in 2.3.2.

9.3.3 Wet Service Factor, C_M , and Temperature Factor, C_t

Reference design values for wood structural panels are applicable to dry service conditions as specified in 9.1.4 where $C_M = 1.0$ and $C_t = 1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture and/or high temperature shall be based on information from an approved source.

dry condition is M.C. < 16%

 Table 9.3.1
 Applicability of Adjustment Factors for Wood Structural Panels

		ASD only	ASD	and L	RFD		LRFD only	1. 1. 1 1. 1. 1 1. 1. 1 1. 1 1. 1 1. 1
		Load Duration Factor	Wet Service Factor	Temperature Factor	Panel Size Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
ч.						K _F	¢	
$F_bS' = F_bS$	х	CD	C_{M}	\mathbf{C}_{t}	C_s	2.54	0.85	λ
$F_t A' = F_t A$	х	CD	C_{M}	\mathbf{C}_{t}	C_s	2.70	0.80	λ
$F_v t_v = F_v t_v$	x	CD	C _M	$\mathbf{C}_{\mathbf{t}}$	-	2.88	0.75	λ
$F_{s}(Ib/Q)' = F_{s}(Ib/Q)$	х	CD	C_M	C_t	-	2.88	0.75	λ
$F_c A' = F_c A$	x	CD	C _M	Ct	-	2.40	0.90	λ
$\mathbf{F}_{\mathbf{c}\perp} = \mathbf{F}_{\mathbf{c}\perp}$	x	-	См	C_t	-	1.67	0.90	14 15 1 14 15 1
EI = EI	х		C _M	Ct	-	1. 1943 H	<u>ति</u> त्युक्ति हो। त्र द्वार न वित्र वि	
EA' = EA	х	-	C _M	Ct	-		z els – seed	-
$\mathbf{G}_{\mathbf{v}}\mathbf{t}_{\mathbf{v}}' = \mathbf{G}_{\mathbf{v}}\mathbf{t}_{\mathbf{v}}$	x	- 10 ester -	C _M	Ct	-	- 100 -	1.31 <u>-</u> 937	19 <u>-</u> 1

Adjustment Factors

9.3.3 Wet Service Factor, $C_{\text{M}},$ and Temperature Factor, C_{t}

Reference design values for wood structural panels are applicable to dry service conditions as specified in 9.1.4 where $C_M = 1.0$ and $C_t = 1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture and/or high temperature shall be based on information from an approved source.

dry condition is M.C. < 16%

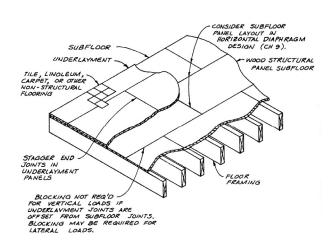
Capacity	Moisture Content Adjustment Factor (C _m)
Strength	
(F _b S, F _i A, F _c A, F _s [lb/Q], F _s t _v)	0.75
Stiffness (EI, EA, G _v t _v)	0.85
Bearing (F _{c1} A) Plywood OSB	0.50 0.20
Nail withdrawal	
strength	0.75
Wood screw withdrawal strength and lateral strength for dowel-type fasteners (nails, screws	
and bolts) of 1/4 inch or less in diameter	NDS Table 10.3.3

APA D510C 2012

University of Michigan, Taubman College

Wood Structures

Slide 9 of 46


Panel Size Factor

9.3.4 Panel Size Factor, Cs

Reference bending and tension design values (F_bS and F_tA) for wood structural panels are applicable to panels that are 24" or greater in width (i.e., dimension perpendicular to the applied stress). For panels less than 24" in width, reference bending and tension design values shall be multiplied by the panel size factor, C_s , specified in Table 9.3.4.

Table 9.3.4 Panel Size Factor, Cs								
Panel Strip Width, w	Cs							
w ≤ 8"	0.5							
8" < w < 24"	(8 + w) / 32							
w ≥ 24"	1.0							

Other Considerations

9.4.1 Flatwise Bending

Wood structural panels shall be designed for flexure by checking bending moment, shear, and deflection. Adjusted planar shear shall be used as the shear resistance in checking the shear for panels in flatwise bending. Appropriate beam equations shall be used with the design spans as defined below.

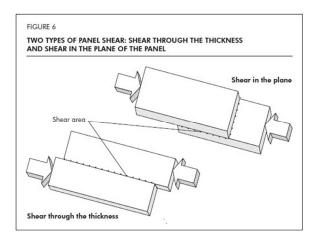
- (a) Bending moment-distance between center-line of supports.
- (b) Shear-clear span.
- (c) Deflection-clear span plus the support width factor. For 2" nominal and 4" nominal framing, the support width factor is equal to 0.25" and 0.625", respectively.

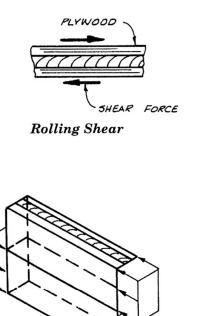
NDS

Wood Structures

Slide 11 of 46

Shear


NDS


9.4.4 Planar (Rolling) Shear

The adjusted planar (rolling) shear shall be used in design when the shear force is applied in the plane of wood structural panels.

9.4.5 Through-the-Thickness Shear

The adjusted through-the-thickness shear shall be used in design when the shear force is applied throughthe-thickness of wood structural panels.

BEAM

FRAMING PLAN

SHEATHING LOADS (NORMAL TO

SURFACE)

а

h

SECTION

JOIST

DEFLECTED SHAPE

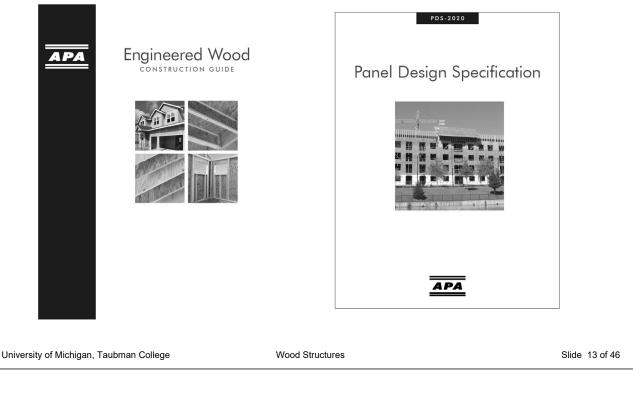
- JOISTS PLYWOOD

- I' STRIP

LYWOOD

SPAN

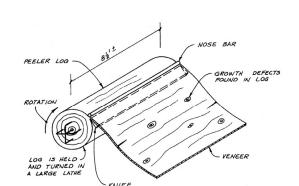
PLYWOOD SHEAR FORCE

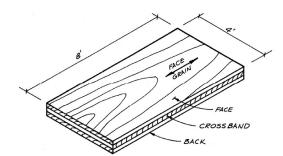

Shear through the Thickness

University of Michigan, Taubman College

Specification

APA E30 Engineered Wood Construction Guide


APA D510 Panel Design Guide



Plywood

Composition

- peeled as continuous sheets of veneer
- cut to size
- defects cut out and patched by grade
 - layup with odd layers and cross grain
 - each veneer is a ply
 - a layer may have 1 or more plys
 - each layer is cross laminated
 - Face top/outside ply
 - Back bottom/inside ply
 - Crossband inner layer(s) 90° to face/back
 - Center inner layer(s) parallel with face/back
- glued and pressed
- finished (sanding levels)
- nominal dimension: 4' x 8'
 - special sizes 4' x 10' or 4' x 12'
- tolerance 0" to 1/8" undersized
- thickness generally 1/32 undersize

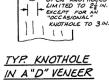
Layers and Plys	
Layers and Fiys	FIGURE 1.1 TYPICAL THREE- AND FIVE-LAYER CONSTRUCTION WITH PARALLEL-LAMINATED CROSS BANDS IN THE 4- AND 6-PLY PANELS.
Actual Thickness of Plywood	3-layer (3-ply)
nominal actual	3-layer (4-ply)
1/4" 7/32"	
3/8" 11/32"	5-layer (5-ply)
1/2" 15/32"	
3/4 " 23/32"	Face Grain Direction 5-layer (6-ply)
	APA D510
University of Michigan, Taubman College	Wood Structures Slide 15 of 46
Span Direction	
Span Direction strong direction vs. weak direction	SHEATHING SPAN
strong direction vs.	SHEATHING SPAN '' SPAN '' SHEATHING '' '' SHEATHING '' SHEATHING '' '' SHEATHING '' SHEATHING '' SHEATHING SPAN '' SHEATHING SHALLEL TO SPAN SHALLEL TO SPAN SHALLEL TO SPAN
strong direction vs.	SHEATHING SPAN ////////////////////////////////////
strong direction vs.	SHEATHING SPAN I VICION SPAN I VICION SHADED LAVERS ARE PARALLEL TO SPAN SECTION I STRONG ORIENTATION
strong direction vs.	SHEATHING SPAN I VICTOR SPAN I VICTOR SPAN SECTION I SECTION I STRONG ORIENTATION

Species Classification

TABLE 1

Groups by strenath

- 1 –
- grou
- Stru grou
- grou
- grou


	up 1	Group 2	Group 3	Group 4	Group 5
group 1 is strongest Structural 1 has group 1 all plys group 4 is weakest group 5 is not rated	ch, American Cedar, Por n Cypress weet Douglas-fi ellow Fir glas-fir ^(b) Balsam h, Western Califorr de, Sugar Grand , Southern Noble oblolly Pacific S ongleaf White hortleaf Hemlock, Blash Maple, Blass	Virginia Western White Black Red Sweetgum Western Tamarack	Alder, Red Birch, Paper Cedar, Alaska Fir, Subalpine Hemlock, Eastern Maple, Bigleaf Pine Jack Lodgepole Ponderosa Spruce Redwood Spruce Engelmann White	Aspen Bigtooth Quaking Cedar Incense Western Red Cottonwood Eastern Black (W. Poplar) Pine Eastern White Sugar	Basswood Poplar, Balsam
Apit Kap Ker Pine	ning ^{(c)(d)} Bagtika	an		Cativo	
Ply (Se (b) Do of / Co (c) Eoc (d) Sp	wood, APA Form L870. The spec e Section 5.2.1. of PS 1-09 for a gglas-fir from trees grown in the Uberta and British Columbia she orado, Arizona and New Mexicc h of these names represents a tr icies from the genus Dipterocarp onesia. Meranti shall be limited to spec	ance with ASTM D2555 as discus ies groupings are only valid for sy dditional information.) states of Washington, Oregon, C III be classed as Group 1 Dougla o shall be classed as Group 2 Do ade group of woods consisting o uus marketed collectively: Apiton ies having a specific gravity of 0.	pecies grown in the region California, Idaho, Montanc Is-fir. Douglas-fir from tree uglas-fir. f a number of closely relat g if originating in the Philip	s referenced in Appendix A a, Wyoming, and the Canac as grown in the states of Ner ed species. opines, Keruing if originatin	of PS 1-09. dian Provinces vada, Utah, g in Malaysia or

Veneer Grades

TABLE 2	R GRADES	DEFECT
A	Smooth, paintable. Not more than 18 neatly made repairs, boat, sled, or router type, and parallel to grain, permitted. Wood or synthetic repairs permitted. May be used for natural finish in less demanding applications.	<u>TYP. PATCH IN</u> AN "A" VENEER
В	Solid surface. Shims, sled or router repairs, and tight knots to 1 inch across grain permitted. Wood or synthetic repairs permitted. Some minor splits permitted.	4'
	Improved C veneer with splits limited to 1/8-inch width and knotholes or other open defects limited to 1/4 x 1/2 inch. Wood or synthetic repairs permitted. Admits some broken grain.	TYP. PATCH IN
С	Tight knots to 1-1/2 inches. Knotholes to 1 inch across grain and some to 1-1/2 inches if total width of knots and knotholes is within specified limits. Synthetic or wood repairs. Discoloration and sanding defects that do not impair strength permitted. Limited splits allowed. Stitching permitted.	$\frac{A^{*}B^{*} VENEER}{4'}$
D	Knots and knotholes to 2-1/2-inch width across grain and 1/2 inch larger within specified limits. Limited splits are permitted. Stitching permitted. Limited to Exposure 1 panels.	O OPEN KNOTHOLES UMITED TO 1 NI. EXCEPT FOR AN "OCCASIONAL" KNOTHOLE TO IS IN.
A and (C are structurally similar (C can upgrade to A) $ \begin{bmatrix} 1 \\ \\ 0 \text{ open Muot Holes}\\ + \downarrow_{\text{Excert FOR AV}}\\ + \downarrow_{\text{Excert FOR AV}\\ + \downarrow_{\text{Excert FOR AV}}\\ + \downarrow_{\text{Excert FOR AV}\\ + \downarrow_{Exc$	<u>TYP. KNOTHOLE</u> IN A "C" VENEER

Wood Structures

B and D are structurally similar (D can upgrade to B) A and B are usually face veneers, C and D are inner

APA D510

DEFECT REMOVED

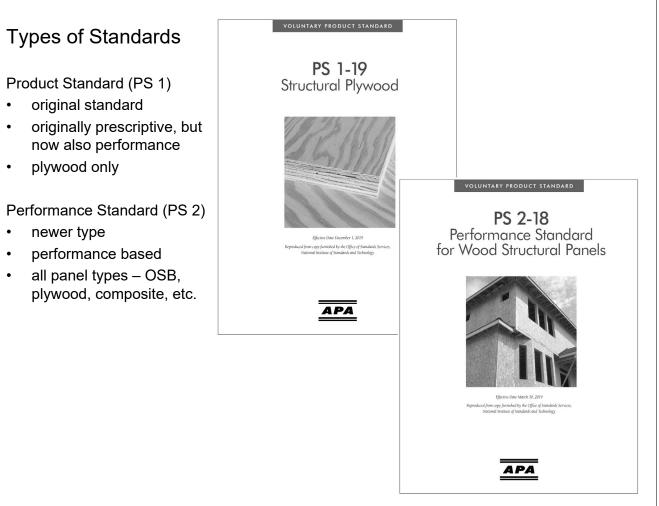
111

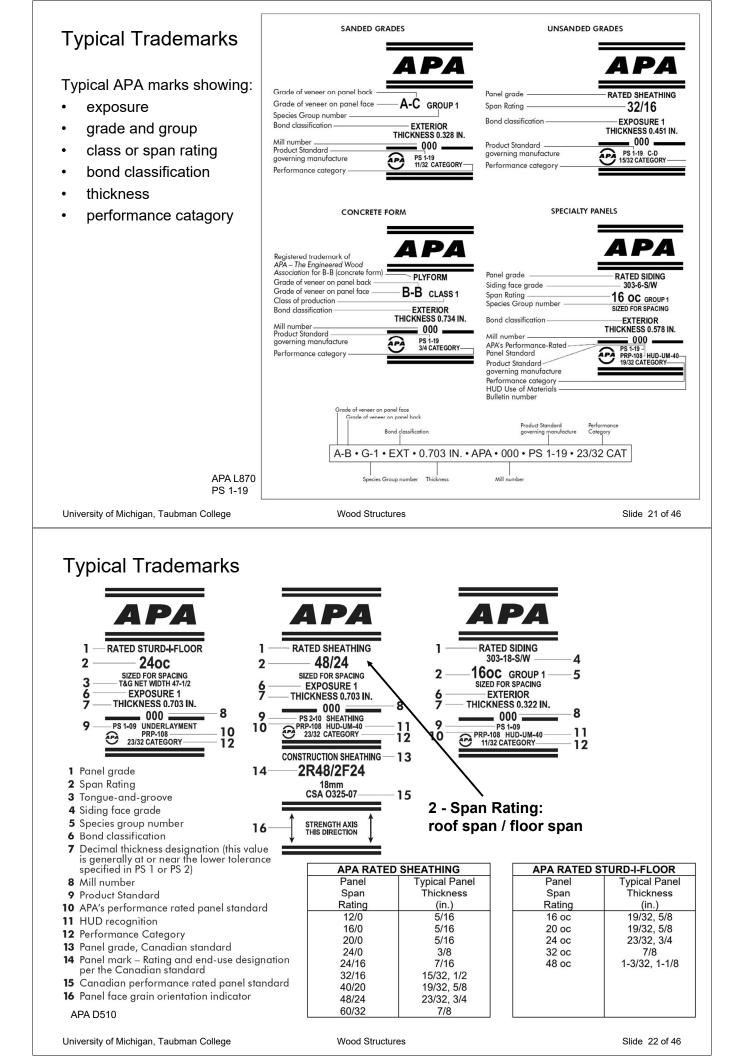
Exposure Classification

- Exterior
 - Waterproof Glue
 - Permanently exposed to weather
 - C-grade or better
- Exposure 1
 - Waterproof glue
 - Temporarily in weather
 - D or C grade

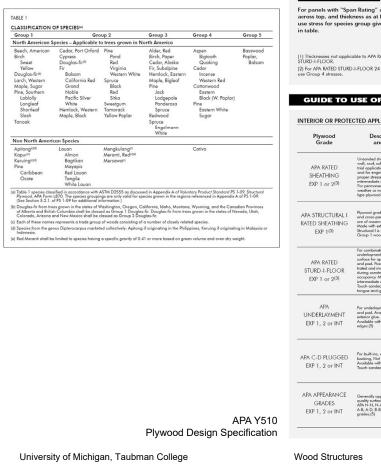
Exposure 2 – IMG

- Intermediate glue
- Intermediate resistance to moisture
- High humidity
- Interior
 - Permanently protected
 - Short periods of 90%
 - humidity


			Panel Construction		
Panel Grade	Description & Use	Common Performance Categories	OSB	Plywood	
APA RATED SHEATHING EXP 1	Unsanded sheathing grade for wall, roof, subflooring, and industrial applications such as pallets and for engineering design with proper capacities.	5/16, 3/8, 7/16*, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes	
APA STRUCTURAL I RATED SHEATHING EXP 1	Panel grades to use where shear and cross-panel strength properties are of maximum importance.	3/8, 7/16*, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes	
APA RATED STURD-I-FLOOR EXP 1	Combination subfloor-underlayment. Provides smooth surface for application of carpet and pad. Possesses high concentrated and impact load resistance during con- struction and occupancy. Touch-sanded. Available with tongue-and-groove edges.	19/32, 5/8, 23/32, 3/4, 7/8, 1, 1-3/32, 1-1/8	Yes	Yes	
APA UNDERLAYMENT EXP 1	For underlayment under carpet and pad. Touch-sanded. Available with tongue-and-groove edges for panels with Performance Categories of 19/32 or greater.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes	
APA C-C Plugged EXT	For underlayment, refrigerated or controlled atmosphere storage rooms, open soffits and other similar applications where continuous or severe moisture may be present. Touch-sanded. Available with tongue-and-groove edges for panels with Performance Categories of 19/32 or greater.	1/2, 19/32, 5/8, 23/32, 3/4	No	Yes	
APA Sanded Grades EXP 1 or EXT	Generally applied where a high quality surface is required. Includes APA A-A, A-B, A-C, A-D, B-B, B-C and B-D grades.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes	
APA MARINE EXT	Superior Exterior plywood made only with Douglas-fir or Western Larch. Special solid-core construction. Available with MDO or HDO face. Ideal for boat hull construction.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes	


APA D510

University of Michigan, Taubman College


Wood Structures

Slide 19 of 46

Typical	Trademarks
Typical	

		Spa	n Rating	(APA RA	TED SHEAT	HING gra	ide)	
	12/0	16/0	20/0	24/0	32/16	40/20	48/24	
Thickness					Span Rati	ng (STUR	D-I-FLOO	R grade)
(in.)					16 oc	20 oc	24 oc	48 oc
5/16	4	3	1					
3/8			4	1				
15/32 & 1/2				4	1(1)			
19/32 & 5/8					4	1		
23/32 & 3/4	2					4	1	
7/8							3(2)	
1-1/8								1

GUIDE TO USE OF ALLOWABLE STRESS AND SECTION PROPERTIES TABLES

Plywood Grade	Description and Use	Typical Trademarks		eneer Grade		Common Thicknesses	Grade Stress Level	Species Group	Section Property
	and Ose	Irademarks	Face	Back	Inner	Thicknesses	(Table 3)	Group	Table
APA RATED SHEATHING EXP 1 or 2 ⁽³⁾	Unsanded sheathing grade for well, roof, suflooring, and indus- trial applications such as pollets and for engineering design, with proper stresses. Manufactured with intermediate and exterior glue.(1) For permanent exposure to weather or moisture only Exterior hype plywood is suitable.	APA WESTERSERVE SATURATIONS SUPPORT PARAM DEPOSIT PETER LO PREMI	С	D	D	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	See "Key to Span Rating"	Table 1 (unsanded)
APA STRUCTURAL I RATED SHEATHING EXP 1 ⁽³⁾	Plywood grades to use where shear and cross-panel strength propeties are of maximum importance. Made with setterior glue only. Structural I is made from all Group 1 woods.	APA Internet of the second second second second second second second second second second second second second second second second second sec	С	D	D	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	S-2	Group 1	Table 2 (unsanded)
APA RATED STURD-I-FLOOR EXP 1 or 2 ⁽³⁾	For combination subfloor- underlayment, Provides smooth surface for application of carpet and pad. Possesses high concen- trated and impact load resitance during construction and occupancy, Manufachured with intermediate and extensir glue. Touch-sanded.(4) Available with tongue-and-prove edges.(5)	APA MORE STREE-HLOR DO C ASSESSMENT MORE STREE-HLOR DO C ASSESSMENT MORE STREEMENT MORE	C plugged	D	C & D	19/32, 5/8, 23/32, 3/4, 1-1/8 (2-4-1)	S-3(1)	See "Key to Span Rating"	Table 1 (touch-sanded
APA UNDERLAYMENT EXP 1, 2 or INT	For underlayment under carpet and pad. Available with extenor glue. Touch-randed. Available with tongue-and-groove edges.(5)	APA w00040000000w UNCCOLUMENT GROUP 1 DEPOSITE 1 0000 r11:6	C plugged	D	C & D	1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	As specified	Table 1 (touch-sanded
APA C-D PLUGGED EXP 1, 2 or INT	For built-ins, wall and ceiling file backing. Not for underlayment. Available with exterior glue. Touch-sonded.(5)	APA Incoversion Geoup 2 Exposer 1 0 115	C plugged	D	D	1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	As Specified	Table 1 (touch-sanded
APA APPEARANCE GRADES EXP 1, 2 or INT	Generally applied where a high quality surface is required. Includes APA N+N, N+A, N+B, N-D, A-A, A+B, A-D, B+B, and B-D INT grades.(5)	APA +000 fallows A-D gaup 1 torogan 1 	B or better	D or better	C & D	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	As Specified	Table 1 (sanded)

Design Aids

Design Aids

TABLE 1a

UNIFORM LOADS (PSF) ON APA RATED PLYWOOD SHEATHING.

			Strength Axis ^(a)											
Span Rating ^(b)	Load Governed By ^(c)		Perpendicular to Supports Span Center-to-Center of Supports (inches)								Parallel to Suppor Span Center-to-Cer of Supports (inche			
		12	16	19.2	24	30	32	36	40	48	60	12	16	24
	L/360	287	108	59	29	14	11	10				16		
	L/240	431	162	89	43	21	17	15				23		
24/0	L/180	574	216	118	57	28	23	20				31		
	Bending	208	117	81	52	33	29	19				45		
	Shear	295	214	175	138	109	102	86				524		
	L/360	544	205	112	54	27	22	19	14			35	13	
	L/240	816	307	168	81	40	32	29	21			53	20	
32/16	L/180	1,088	409	224	108	53	43	38	27			70	27	
	Bending	308	173	120	77	49	43	27	22			77	43	
	Shear	381	276	226	178	140	131	111	100			657	476	
	L/360	1,088	409	224	108	53	43	38	27	18		78	29	10
	L/240	1,631	614	336	163	80	65	57	41	27		117	44	15
40/20	L/180	2,175	818	448	217	106	87	76	55	36		157	59	20
	Bending	521	293	203	130	83	73	46	38	26		125	70	25
	Shear	467	338	277	218	172	161	136	122	106		819	593	367
	L/360	1,914	720	394	191	94	76	67	48	31	15	283	106	36
	L/240	2,871	1,080	591	286	140	114	100	72	47	23	424	160	54
48/24	L/180	3,828	1,440	788	382	187	152	134	96	63	31	566	213	72
	Bending	775	436	303	194	124	109	69	56	39	25	225	127	45
	Shear	571	414	339	267	211	197	167	150	129	102	1,381	1,000	619

(a) The strength axis is the long panel dimension unless otherwise identified.
(b) Nominal thickness may vary within Span Rating. For range of thicknesses, see Table 5 of APA's Panel Design Specification, Form D510.
(c) Tabulated values are based on the most conservative plywood construction, as shown in Table 6. Some capacities may be increased by application of formulas in Panel Design Specification, Form D510.

APA – Q225

University of Michigan, Taubman College

Design Aids

Wood Structures

Slide 25 of 46

Panel Grade		Common	Pa	nel Construction
and Bond Classification	Description & Use	Description & Use Performance Category (in.)		Plywood Minimum Veneer Grade
Sheathing EXP 1	Unsanded sheathing grade for wall, roof, subflooring, and industrial applications such as pallets and for engineering design with proper capacities.	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
Structural I Sheathing EXP 1	Panel grades to use where shear and cross- panel strength properties are of maximum importance. Plywood Structural I is made from all Group 1 woods.	3/8, 7/16, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
Single Floor EXP 1	Combination subfloor-underlayment. Provides smooth surface for application of carpet and pad. Possesses high concentrated and impact load resistance during construction and occupancy. Touch-sanded. Available with tongue-and-groove edges.	19/32, 5/8, 23/32, 3/4, 7/8, 1, 1-3/32, 1-1/8	Yes	Yes
Underlayment EXP 1 or EXT		1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D
C-D-Plugged EXP 1	For built-ins, wall and ceiling tile backing. Not for underlayment. Touch-sanded.	1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D
Sanded Grade EXP 1 or EXT	5 11 0 1 5	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face B or better, back D or better, inner C & D
Marine EXT	Superior Exterior-type plywood made only with Douglas-fir or western larch. Special solid-core construction. Available with medium density overlay (MDO) or high density overlay (HDO) face. Ideal for boat hull construction.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face A or face B, back A or inner B

TABLE 12

PANEL SECTION PROPERTIES(*)

Performance	Approxit Weigh (psf)	t(b)	Nominal Thickness t	Area	Moment of Inertia I	Section Modulus S	Statical Moment Q	Shear Constant Ib/Q
Category	Plywood	OSB	(in.)	(in.²/ft)	(in.4/ft)	(in.3/ft)	(in. ³ /ft)	(in.2/ft)
3/8	1.1	1.2	.375	4.500	.053	.281	.211	3.000
7/16	1.3	1.4	.437	5.250	.084	.383	.287	3.500
15/32	1.4	1.5	.469	5.625	.103	.440	.330	3.750
1/2	1.5	1.7	.500	6.000	.125	.500	.375	4.000
19/32	1.8	2.0	.594	7.125	.209	.705	.529	4.750
5/8	1.9	2.1	.625	7.500	.244	.781	.586	5.000
23/32	2.2	2.4	.719	8.625	.371	1.033	.775	5.750
3/4	2.3	2.5	.750	9.000	.422	1.125	.844	6.000
7/8	2.6	2.9	.875	10.500	.670	1.531	1.148	7.000
1	3.0	3.3	1.000	12.000	1.000	2.000	1.500	8.000
1-1/8	3.3	3.6	1.125	13.500	1.424	2.531	1.898	9.000

See Section 6 for conversion factors.

(a) Properties based on rectangular cross section of 1-ft width.

(b) Approximate weight for calculating actual dead loads of the panel.

APA D510

University of Michigan, Taubman College

Wood Structures

Slide 27 of 46

n Rating Chart	-	St	ress Parallel	to Strength A	xis	Stress	Perpendicul	ar to Streng	th Axis
	Span _		Plywood				Plywood		
	Rating	3-ply	4-ply	5-ply	OSB	3-ply	4-ply	5-ply	OSB
		NDING STIFF			l width)		. /		
	24/0	66,000	66,000	66,000	60,000	3,600	7,900	11,000	11,00
	24/16	86,000	86,000	86,000	78,000	5,200	11,500	16,000	16,000
	32/16	125,000	125,000	125,000	115,000	8,100	18,000	25,000	25,00
	40/20	250,000	250,000	250,000	225,000	18,000	39,500	56,000	56,00
	48/24	NA	440,000	440,000	400,000	NA	65,000	91,500	91,50
	16 oc	165,000	165,000	165,000	150,000	11,000	24,000	34,000	34,00
	20 oc	230,000	230,000	230,000	210,000	13,000	28,500	40,500	40,50 80,50
	24 oc 32 oc	NA	330,000 NA	330,000 715,000	300,000 650,000	NA	57,000 NA	80,500 235,000	235,00
	48 oc	NA	NA	1,265,000	1,150,000	NA	NA	495,000	495,00
	40.00	Structural I M		1,205,000	1,130,000	100	110	475,000	475,00
		1.0	1.0	1.0	1.0	1.5	1.5	1.6	1.
	PANEL BE	NDING STREN							
	24/0	250	275	300	300	54	65	97	9
	24/16	320	350	385	385	64	77	115	11
	32/16	370	405	445	445	92	110	165	16
	40/20	625	690	750	750	150	180	270	27
	48/24 16 oc	NA 415	930 455	1,000 500	1,000	NA 100	270 120	405	40
	20 oc	415	455	575	575	140	120	250	25
	24 oc	NA	705	770	770	NA	260	385	38
	32 oc	NA	NA	1,050	1.050	NA	NA	685	68
	48 oc	NA	NA	1,900	1,900	NA	NA	1,200	1,20
		Structural I M	ultiplier						
	-	1.0	1.0	1.0	1.0	1.3	1.4	1.5	1.5
		IAL TENSION							
	24/0 24/16	2,300 2,600	2,300 2,600	3,000 3,400	2,300 2,600	600 990	600 990	780 1,300	78
	32/16	2,800	2,800	3,650	2,800	1,250	1,250	1,650	1,65
	40/20	2,900	2,900	3,750	2,900	1,600	1,600	2,100	2,10
	48/24	NA	4,000	5,200	4,000	NA	1,950	2,550	2,55
	16 oc	2,600	2,600	3,400	2,600	1,450	1,450	1,900	1,90
	20 oc	2,900	2,900	3,750	2,900	1,600	1,600	2,100	2,10
	24 oc	NA	3,350	4,350	3,350	NA	1,950	2,550	2,55
	32 oc	NA	NA	5,200	4,000	NA	NA	3,250	3,25
	48 oc	NA	NA	7,300	5,600	NA	NA	4,750	4,7
		Structural I M 1.0	ultiplier 1.0	1.0	1.0	1.0	1.0	1.0	1
	PANEL AX	IAL COMPRES							
	24/0	2,850	4,300	4,300	2,850	2,500	3,750	3,750	2,50
	24/16	3,250	4,900	4,900	3,250	2,500	3,750	3,750	2,50
	32/16	3,550	5,350	5,350	3,550	3,100	4,650	4,650	3,10
	40/20	4,200	6,300	6,300	4,200	4,000	6,000	6,000	4,00
	48/24	NA	7,500	7,500	5,000	NA 0 (00	7,200	7,200	4,30
	16 oc	4,000	6,000	6,000	4,000	3,600	5,400	5,400	3,60
	20 oc 24 oc	4,200 NA	6,300 7,500	6,300 7,500	4,200 5,000	4,000 NA	6,000 7,200	6,000 7,200	4,00
	24 oc 32 oc	NA	7,500 NA	9,450	6,300	NA	7,200 NA	9,300	6,20
	32 oc 48 oc	NA	NA	9,450	8,100	NA	NA	9,300	6,75
		Structural I M			-,				0,70
APA D510		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1

University of Michigan, Taubman College

pan Rating Chart		S	tress Parallel	o Strength Ax	is	Stre		ular to Strengt	h Axis
ontinued)	Span		Plywood				Plywood		
Jillilled)	Rating PANEL A	3-ply XIAL STIFFNE	4-ply SS, EA (lbf/ft	5-ply of panel widt	OSB (h)	3-ply	4-ply	5-ply	OSB
	24/0	3,350,000	3,350,000	3,350,000	3,350,000	2,900,000	2,900,000	2,900,000	2,500,000(0)
	24/16	3,800,000 4,150,000	3,800,000	3,800,000 4,150,000	3,800,000 4,150,000	2,900,000 3,600,000	2,900,000	2,900,000 3,600,000	2,700,000 ^(a) 2,700,000
	32/16 40/20	5,000,000	4,150,000 5,000,000	5,000,000	5,000,000	4,500,000	3,600,000 4,500,000	4,500,000	2,900,000
	48/24 16 oc	NA 4,500,000	5,850,000 4,500,000	5,850,000 4,500,000	5,850,000 4,500,000	NA 4,200,000	5,000,000 4,200,000	5,000,000 4,200,000	3,300,000 ^(b) 2,700,000
	20 oc	5,000,000	5,000,000	5,000,000	5,000,000	4,500,000	4,500,000	4,500,000	2,900,000(4)
	24 oc 32 oc	NA NA	5,850,000 NA	5,850,000 7,500,000	5,850,000 7,500,000	NA NA	5,000,000 NA	5,000,000 7,300,000	3,300,000 ^(b) 4,200,000
	48 oc	NA	NA	8,200,000	8,200,000	NA	NA	7,300,000	4,600,000
		Structural I 1.0	Multiplier 1.0	1.0	1.0	1.0	1.0	1.0	1.0
	PANEL SI		PLANE, F_(Ib/0			1.0	1.0	1.0	1.0
	24/0	155	155	170	130	275	375	130	130
	24/16 32/16	180 200	180 200	195 215	150 165	315 345	435 480	150 165	150 165
	40/20 48/24	245 NA	245 300	265 325	205 250	430 NA	595 725	205 250	205 250
	16 oc	245	245	265	205	430	595	205	205
	20 oc 24 oc	245 NA	245 300	265 325	205 250	430 NA	595 725	205 250	205 250
	32 oc	NA	NA	390	300	NA	NA	300	300
	48 oc	NA Structural I	NA Multiplier	500	385	NA	NA	385	385
		1.4	1.4	1.4	1.0	1.4	1.4	1.0	1.0
	24/0	GIDITY THRO 25.000	UGH THE THI 32,500	CKNESS, G.t. 37,500	(lbf/in. of pan 77.500	el depth) 25,000	32,500	27 500	77,500
	24/16	27,000	35,000	40,500	83,500	27,000	35,000	37,500 40,500	83,500
	32/16 40/20	27,000 28,500	35,000 37,000	40,500 43,000	83,500 88,500	27,000 28,500	35,000 37,000	40,500 43,000	83,500 88,500
	48/24	NA	40,500	46,500	96,000	NA	40,500	46,500	96,000
	16 oc 20 oc	27,000 28,000	35,000 36,500	40,500 42,000	83,500 87,000	27,000 28,000	35,000 36,500	40,500 42,000	83,500 87,000
	24 oc	NA	39,000	45,000	93,000	NA	39,000	45,000	93,000
	32 oc 48 oc	NA NA	NA NA	54,000 76,000	110,000 155,000	NA NA	NA NA	54,000 76,000	110,000 155,000
		Structural I			1.0	1.0	1.0		1.0
	PANEL SI	1.3 HEAR THROU	1.3 GH THE THICI	1.1 (NESS, F.t. (Ib	1.0 f/in. of shear-	1.3 resisting pane	1.3 el length)	1.1	1.0
	24/0 24/16	53 57	69 74	80 86	155 165	53 57	69 74	80 86	155 165
	32/16	62	81	93	180	62	81	93	180
	40/20 48/24	68 NA	88 98	100	195 220	68 NA	88 98	100	195 220
	16 oc	58	75	87	170	58	75	87	170
	20 oc 24 oc	67 NA	87 96	100 110	195 215	67 NA	87 96	100 110	195 215
	32 oc 48 oc	NA	NA	120 160	230 305	NA	NA NA	120 160	230 305
	40.00	Structural I		100	305	H/A	TRA.	130	
		1.3	1.3	1.1	1.0	1.3	1.3	1.1	1.0
			e atypical APA p itted to be increa				ending stiffness	(El _{isint}) of prefabri	cated wood
APA D510		ue shall be permi icated wood I-ioi	itted to be increa	sed to 4,500,00	0 lbf/ft for the ca	lculation of the c	omposite floor b	ending stiffness	(El) of

Capacity Equations

Bending

4.7.1. Uniform loads based on bending strength

The following formulas shall be used for computing loads based on design bending strength capacity (F_bS).

For a single span:

$$w_b = \frac{96 F_b S}{\ell_1^2}$$

For a two-span condition:

$$w_b = \frac{96 F_b S}{\ell_1^2}$$

For a three-span condition:

$$w_b = \frac{120 F_b S}{\ell_1^2}$$

Where:

 w_b = uniform load based on bending strength (psf)

 F_bS = design bending strength capacity (lbf-in./ft)

 $\ell_1 = \text{span} (\text{in., center-to-center of supports})$

Note the dimensions as given

APA D510

Capacity Equations

Shear

4.7.2. Uniform loads based on shear strength

The following formulas shall be used for computing loads based on design shear strength capacity (F_[Ib/Q]).

For a single span: $w_{s} = \frac{24 F_{s}(lb/Q)}{\ell_{2}}$ For a two-span condition: $w_{s} = \frac{19.2 F_{s}(lb/Q)}{\ell_{2}}$ For a three-span condition: $w_{s} = \frac{20 F_{s}(lb/Q)}{\ell_{2}}$ Where: $w_{s} = \text{uniform load based on shear strength (psf)} F_{s}(lb/Q) = \text{design shear strength capacity (lbf/ft)}$ $\ell_{2} = \text{clear span (in., center-to-center of supports minus support width)}$ Note the dimensions as given APA D510

University of Michigan, Taubman College

Wood Structures

Slide 31 of 46

Capacity Equations

Deflection

4.7.3. Uniform loads based on deflection requirements

The following formulas shall be used for computing deflection under uniform load, or allowable loads based on deflection requirements.

For a single span:

 $\Delta = \frac{w\ell_3^4}{921.6 \text{ EI}}$

For a two-span condition:

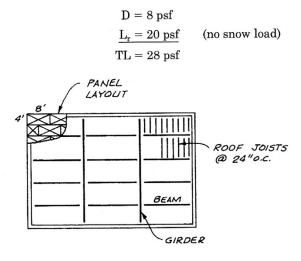
$$\Delta = \frac{w\ell_3^4}{2220 \text{ EI}}$$

For a three-span condition:

$$\Delta = \frac{w\ell_3^4}{1743 \text{ EI}}$$

Where:

- Δ = deflection (in.)
- w = uniform load (psf)
- EI = design bending stiffness capacity (lbf-in.²/ft)
- $\ell_3 = \text{clear span} + \text{SW}(\text{in.})$
- SW = support-width factor, equal to 0.25 inch for two-inch-nominal lumber framing and 0.625 inch for fourinch-nominal lumber framing.


Note the dimensions as given

APA D510

Roof Sheathing Design Example

Given: flat roof framed as shown roof joists at 24" o.c. D = 8 psf Lr = 20 psf deflection limits: Lr = L/240 total = L/180

Find: panel specifications

RODF FRAMING PLAN

University of Michigan, Taubman College

Wood Structures

Slide 33 of 46

Roof Sheathing Example

Table M9.1-1 Guide to Panel Use

Classification:	Panel Grade		Common	Pa	nel Construction
exterior (protected) sheathing	and Bond Classification	Description & Use	Performance Category (in.)	OSB	Plywood Minimum Veneer Grade
	Sheathing EXP 1	Unsanded sheathing grade for wall, roof, subflooring, and industrial applications such as pallets and for engineering design with proper	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
could use either		capacities.			
also either OSB or	Structural I Sheathing EXP 1	Panel grades to use where shear and cross- panel strength properties are of maximum importance. Plywood Structural I is made from all Group 1 woods.	3/8, 7/16, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
plywood	Single Floor EXP 1	Combination subfloor-underlayment. Provides smooth surface for application of carpet and pad. Possesses high concentrated and impact load resistance during construction and occupancy. Touch-sanded. Available with tongue-and-groove edges.	19/32, 5/8, 23/32, 3/4, 7/8, 1, 1-3/32, 1-1/8	Yes	Yes
	Underlayment EXP 1 or EXT	For underlayment under carpet and pad. Available with exterior glue. Touch-sanded or sanded. Panels with performance category of 19/32 or greater may be available with tongue- and-groove edges.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D
	C-D-Plugged EXP 1	For built-ins, wall and ceiling tile backing. Not for underlayment. Touch-sanded.	1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D inner D
	Sanded Grades EXP 1 or EXT	Generally applied where a high-quality surface is required. Includes APA A-A, A-C, A-D, B-B, B-C, and B-D grades.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face B or better, back D or better, inner C & D
NDS - Manual	Marine EXT	Superior Exterior-type plywood made only with Douglas-fir or western larch. Special solid-core construction. Available with medium density overlay (MDO) or high density overlay (HDO) face. Ideal for boat hull construction.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face A or face B, back A or inner B

University of Michigan, Taubman College

Wood Structures

Slide 34 of 46

Roof Sheathing Example

								St	rength A	Axis ^(a)					
span rating for roof at 24" o.c. = 24/0	Span Rating ^(b)	Load Governed By ^(c)			SI		ter-to-C	r to Sup Center of hes)		ts			Span C	el to Sup enter-to- ports (ir	Cente
al 24 0.0 24/0	<u></u>		12	16	19.2	24	30	32	36	40	48	60	12	16	24
	$\mathbf{\mathbf{N}}$	L/360	287	108	59	29	14	11	10				16		
	X	L/240	431	162	89	43	21	17	15				23		
eflection limits:	24/0	L/180	574	216	118	57	28	23	20				31		
r = 20 psf L/240		Bending	208	117	81	52	33	29	19				45		
•		Shear L/360	295 544	214 205	175	138 54	109 27	102 22	86 19	14			524 35	13	
240 = 43 psf OK		L/240	816	307	168	81	40	32	29	21			53	20	
	32/16	L/180	1,088	409	224	108	53	43	38	27			70	27	
		Bending	308	173	120	77	49	43	27	22			77	43	
otal = 28 psf L/180		Shear	381	276	226	178	140	131	111	100			657	476	
/180 = 57 psf OK		L/360	1,088	409	224	108	53	43	38	27	18		78	29	10
7100 = 37 ps		L/240	1,631	614	336	163	80	65	57	41	27		117	44	15
	40/20	L/180	2,175	818	448	217	106	87	76	55	36		157	59	20
anding		Bending	521	293	203	130	83	73	46	38	26		125	70	25
ending:		Shear	467	338 720	277 394	218 191	172 94	161 76	136 67	122 48	106 31	15	819	593 106	367 36
sf (C _D)		L/360 L/240	1,914 2,871	1,080	591	286	94 140	114	100	40 72	47	15 23	283 424	160	54
(D)	48/24	L/240 L/180	3,828	1,440	788	382	140	152	134	96	63	31	566	213	72
2 (1.25) = 65 psf OK	10/21	Bending	775	436	303	194	124	109	69	56	39	25	225	127	45
		Shear	571	414	339	267	211	197	167	150	129	102	1,381	1,000	619
hear: sf (C _D)	(b) Nominal (c) Tabulated	gth axis is the lo thickness may v l values are bas in Panel Design	ary within ed on the	Span Ratir most conse	ng. For ra ervative p	nge of this	knesses,							pplication	of
38 (1.25) = 172psf OK													APA	– Q22	25

Roof Sheathing Example

Performance Category (thickness)

for 24/0 four sizes are available with 3/8								PAN RATIN ed in bold t				
peing predominant.	Span -					Perform	nance Co	ategory				
	Rating	3/8	7/16	15/32	1/2	19/32	5/8	23/32	3/4	7/8	1	1-1/8
	APA Ratec	l Sheathi	ng									
So, try 3/8 🛛 🗕 🗕 🗕	▶ 24/0	.375	.437	.469	.500							
-	24/16		.437	.469	.500							
	32/16			.469	.500	.594	.625					
	40/20					.594	.625	.719	.750			
	48/24							.719	.750	.875		
	APA Rateo	Sturd-I-	Floor									
	16 oc					.594	.625					
	20 oc					.594	.625					
	24 oc							.719	.750			
	32 oc									.875	1.000	
	48 oc											1.125

APA – D510

Roof Sheathing Example

Edge support criteria:

0/24 without edge support can only span 20" (19.2).

So either use:

0/24 x 3/8 with edge support

or

0/24 x 15/32 (or 1/2) without edge support

or

24/16 x 7/16 without edge support

Panel Edge Support

For certain span ratings, the maximum recommended roof span for sheathing panels is dependent upon panel edge support. Edge support may be provided by lumber blocking, tongue and groove, or panel clips when edge support is required. Table M9.4-1 summarizes the relationship between panel edge support and maximum recommended spans.

Table M9.4-1 Panel Edge Support² Maximum Recommended Span (in.) Sheathing With Without Span Rating **Edge Support Edge Support** 24/0 24 19.2¹ 24/16 24 24 32/16 28 32 40/20 40 32 48/24 48 36

1. 20 in. for 3/8 and 7/16 performance category panels, 24 in. for 15/32 and

Do in 10 30 and 710 performance category panels, 24 in 10 13/2 and 1/2 performance category panels.
 Additional edge support is recommended when panel widths are less than 24 inches. Edge support requirements should be obtained from the manufacturer.

NDS - Manual

University of Michigan, Taubman College

Wood Structures

Slide 37 of 46

Roof Sheathing Example

Table M9.4-2 Minimum Nailing for Wood Structural Panel Applications

			Nail S	pacing (in.)				
3d nails		Recommended	Panel	Intermediat				
at 6" and 12" o.c.	Application	Nail Size & Type	Edges	Supports				
	Single Floor–Glue-nailed installation ⁵	Ring- or scre	w-shank					
	16, 20, 24 oc, 3/4 performance category or less	6d ¹	6	12				
oanel edge gap:	24 oc, 7/8 or 1 performance category	8d ¹	6	12				
1/8"	32, 48 oc, (32-in. span (c-c) application)	8d ¹	6	12				
	48 oc, (48-in. span (c-c) application)	8d ²	6	6				
	Single Floor-Nailed-only installation	Ring- or screw-shank						
	16, 20, 24 oc, 3/4 performance category or less	6d	6	12				
	24 oc, 7/8 or 1 performance category	8d	6	12				
	32, 48 oc, (32-in. span application)	8d	6	12				
	48 oc, (48-in. span application)	8d ²	6	6				
	Sheathing–Subflooring ³	Common smooth, ring	g- or screw-sh	ank				
	7/16 to 1/2 thick performance category	6d	6	12				
	7/8 performance category or less	8d	6	12				
	Thicker panels	10d	6	6				
	Sheathing–Wall sheathing	Common smooth, ring- or screw	v-shank or gab	vanized box ³				
	7/16 performance category or less	6d	6	12				
	Over 7/16 performance category	8d	6	12				
	Sheathing-Roof sheathing	Common smooth, ring	- or screw-sha	ank ³				
\rightarrow	5/16 to 1 performance category	8d	6	124				
	Thicker panels	8d ring- or screw-shank	6	124				
		or 10d common smooth						

University of Michigan, Taubman College

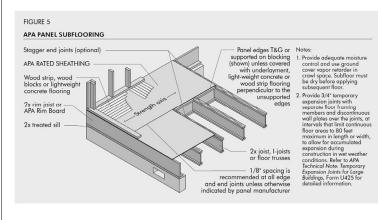
Roof Sheathing

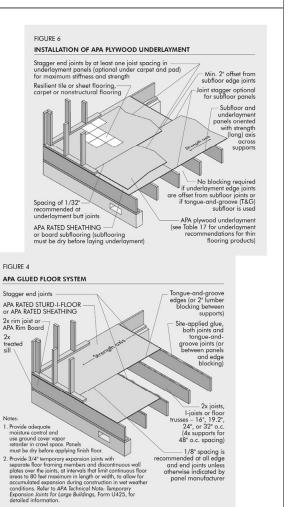
University of Michigan, Taubman College

Wood Structures

Slide 39 of 46

Floor Sheathing


layers:


- subfloor •
- underlayment ٠
- combined subfloor-underlayment

floor types:

subfloor + underlayment

subfloor + APA rated sheathing (e.g. wood flooring) combined subfloor-underlayment + carpet

2x

1/8" spacing is recommended at all edge and end joints unless otherwise indicated by panel manufacturer

Floor Sheathing

load tables and nailing schedules in APA – E30 limits usually set by point load deflection (person)

	Cl	44 ¹ -1			SUPPOR llowable	Live Loads	(psf)⁵				
Sturd-I-Floor Span	Sheathing Span	Minimum Panel Performance	Span	0 14		Spacing (in.)		40	40:		
Rating 16 oc	Rating 24/16, 32/16	Category 7/16 ^d	(in.) 1 16 18	2 16 35 100	19.2	24 33	2	40	48°		
20 ocº	40/20	19/32		70 150	100	100					
24 oc 32 oc	48/24 NA	23/32 7/8	24 43 32	30 240 405	160 295	185 10	0				
48 oc	NA	1-3/32 r two spans or more, dr	48		425	290 16	0	100	55		
4x nominal or a 19/32 is minim	double 2x framing um Performance	load deflection limit is g. Category of Rated Stur 0 oc, the actual joist spo	d-I-Floor.								
		ABLE 16									
	<u>A</u>	PA PANEL SUBFLC		ATED SHEAT	HING)ª,b				Maximum N	ail Spacing (in.)	
		Panel Span	Panel Performance	Maximu	m Span	Nail S		Su	pported Panel	Intermedia	
	_	Rating	Category	(ii		& Typ			Edges ^e	Supports 12	
	-	24/16 32/16	7/16	1	6 6	6d comr 6d comr			6	12	
	_	40/20	19/32, 5/8	19		8d comr			6	12	
		48/24 . For subfloor recomm	23/32, 3/4	2		8d comr			6	12	
	c. d. e.	 APA RATED STURD-I- Other code-approved. See Table 6, page 17. Supported panel join located 3/8 inch from Span may be 24 inch 	d fasteners may be u , for nail dimensions ts shall occur appro n panel edges.	ised. kimately along i	the centerli	ine of framing v	with a n	ninimun	n bearing of 1/2 ir		be
sity of Michi	gan, Taubma	an College		Wood	Structur	res					Slide 41 of 46
or Ca	nacity	/									
_	apacity	/	GNE	H							
oor Ca ample		/	GINE	N - RATE	D SI	HEATTH	INC	4			
_		/	GNE APA 481	N - RATE	D 51	HEATTH	トレ 1	1			
ample	;		GNE APA 48/	N - Rate 24 2	D 51	HEATIHI EXP 5 PLY	1	4	F=	Tel	A C T
ample	or capa	city	APA 48/	RATE 24	12	EXP	1	1	T-24"	T. P.	AT PO AT
ample	;	city	ДРД 48/ FROM	RATE 24 2	DESI	EXP SPLY GN SPE	1	1	t 24".	T. P. o.c.	A R A
ample	or capa	city	ДРД 48/ FROM	RATE 24	DESI	EXP SPLY GN SPE	1	4	1 24", R,=	Ter: 0, c. 24"	A A
ample d the flo ne giver	or capa	city ning	APA 48/ FROM SUPP	RATE 24 2 PLVW00	52 DESI 1-	EXP SPLY GN SPE	1	1	$\frac{1}{24''}$: 27 -4	A CAT
ample d the flo ne giver	or capa	city ning	APA 48/ FROM SUPP	RATE 24 2	52 DESI 1-	EXP SPLY GN SPE	1	à	$\frac{1}{24''}$: 27 -4	₹
ample d the flo ne giver	or capa	city ning	APA 48/ FROM SUPP	RATE 24 2 PLVW00	52 DESI 1-	EXP SPLY GN SPE	1	1	$f_{24''}$ f_{2} f_{2} f_{3} f_{3}	: 27 -4	A 1 ← A 1 25 = 22.74
ample d the flo ne giver L/360 d	or capa	city ning on limit	APA 48/ FROM SUPP	RATE 24 2 PLVW00	52 DESI 1-	EXP SPLY GN SPE	1	1	$\frac{1}{24''}$ $\frac{1}{82}$ $\frac{1}{83}$: 27 -4	A. f. ↑ 1 25 = 22.74

Engineered Wood

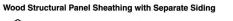
АРА

Floor Capacity example

TABLE 8

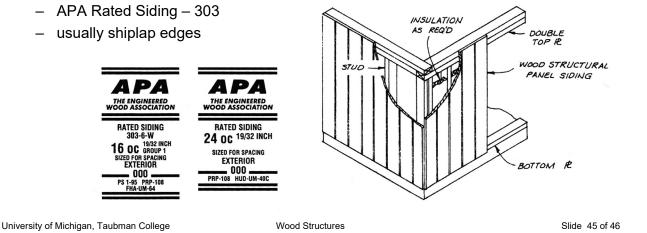
RATED PANELS DESIGN CAPACITIES

University of Michigan, Taubman College

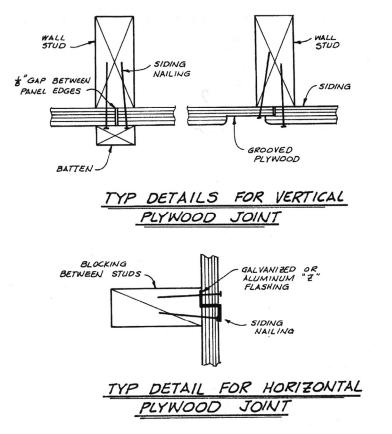

Wood Structures

Slide 44 of 46

Wall Sheathing and Siding


Types:

- 1. Separate Sheathing + Siding
 - spanning strong or weak direction
 - blocking required for shear wall
 - nailing by APA chart _
 - typ. 6d at 6"o.c. edges and 12"o.c. blocking
- 2. Combined as one panel
 - usually with texture or grooved
 - installed vertically (8 ft vertical)
 - APA Rated Siding 303
 - usually shiplap edges



Plywood Combined Sheathing-Siding

Wall Sheathing and Siding

Joint details for combined type (single layer)

