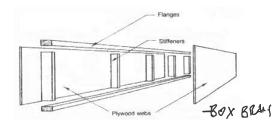

Architecture 544 Wood Structures

Wood Structural Panels

NDS - Chapter 9

University of Michigan, Taubman College

Wood Structures


Slide 1 of 46

510


Wood Structural Panels

Applications:

- Roof, Floor and Wall Sheathing
- Horizontal and Vertical Shearwalls / Diaphragms
- Structural Components
 - Lumber and Plywood Beams
 - Stressed Skin Panels
 - Curved Panels //
 - Folded Plates
 - Sandwich Panels
- Gusset Plates
 - Trusses
 - Frame Connections
- Concrete Formwork

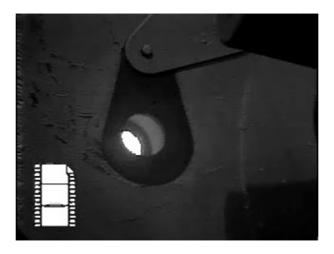
C. Robeller, TU Kaiserslautern

NDS - 9.1 General

9.1.1 Scope - Wood Structural Panels

- Plywood
- Oriented Strand Board (OSB)
- Composite Panels

University of Michigan, Taubman College

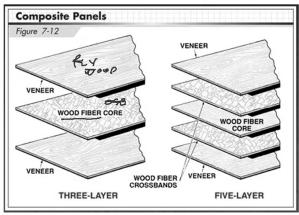

Wood Structures

Slide 3 of 46

NDS - 9.1 General

9.1.1 Scope - Wood Structural Panels

- Plywood
- Oriented Strand Board (OSB)
- Composite Panels



University of Michigan, Taubman College

NDS - 9.1 General

9.1.1 Scope - Wood Structural Panels

- Plywood
- Oriented Strand Board (OSB)
- Composite Panels

Carpentry, American Technical Publishers, 2013

University of Michigan, Taubman College

Wood Structures

Slide 5 of 46

Other Panels

not NDS but can be APA rated

Waferboard – nonveneer, larger flakes. ——Can be oriented or random.

Precursor to <u>OSB</u> but generally inferior.

Replaced by OSB.

Particleboard – nonveneer, small, nonoriented particles – not wafers or strands. Susceptible to water damage.

EXAMPLE 8.9 Nonveneer Sheathing Grade

Plywood vs. OSB

Plywood
higher impact resistance
better moisture resistance
more grades and types

osb stronger in shear more cost effective (cheaper) meets most code requirements

University of Michigan, Taubman College

Wood Structures

Slide 7 of 46

NDS Adjustment Factors

9.3.2 Load Duration Factor, C_D (ASD Only)

All reference strength design values (F_bS , F_tA , F_vt_v , $F_s(Ib/Q)$, F_cA) shall be multiplied by load duration factors, C_D , as specified in 2.3.2.

9.3.3 Wet Service Factor, C_{M} , and Temperature Factor, C_{t}

Reference design values for wood structural panels are applicable to dry service conditions as specified in 9.1.4 where $C_M=1.0$ and $C_t=1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture and/or high temperature shall be based on information from an approved source.

dry condition is M.C. < 16%

Table 9.3.1 Applicability of Adjustment Factors for Wood Structural Panels

		ASD only	ASD	and L	RFD		LRFD only	
		Load Duration Factor	Wet Service Factor	Temperature Factor	Panel Size Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
9						K _F	ф	
$F_bS'=F_bS$	x	C _D	C_{M}	C_{t}	C_s	2.54	0.85	λ
$F_t A' = F_t A$	x	C _D	C_{M}	C_{t}	C_s	2.70	0.80	λ
$F_v t_v = F_v t_v$	x	C_D	C_{M}	C_{t}	-	2.88	0.75	λ
$F_s(Ib/Q)' = F_s(Ib/Q)$	х	C_D	C_{M}	C_{t}	-	2.88	0.75	λ
$F_cA = F_cA$	x	C_{D}	C_{M}	C_{t}	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	Х	-	C_{M}	C_{t}	-	1.67	0.90	4 6 T 4 6 T
EI = EI	х	15 <u>4</u> 1 1 N	C_{M}	C_{t}	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g 1445 pr 147 =187 W	
EA = EA	х	-	C_{M}	C_{t}	-		zak-wad	-
$G_{v}t_{v}^{'}=G_{v}t_{v}$	х	(d 4897) -	C_{M}	C_{t}	-	-	6424 - 987	

Adjustment Factors

9.3.3 Wet Service Factor, C_{M} , and Temperature Factor, C_{t}

Reference design values for wood structural panels are applicable to dry service conditions as specified in 9.1.4 where $C_M=1.0$ and $C_t=1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture and/or high temperature shall be based on information from an approved source.

dry condition is M.C. < 16%

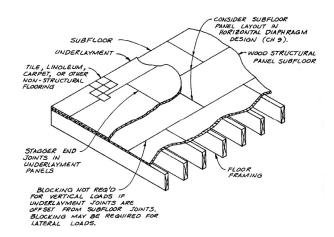
Capacity	Moisture Content Adjustment Factor (C _M)
Strength (F _b S, F _t A, F _c A, F _s [Ib/Q], F _v t _v)	0.75
Stiffness . (EI, EA, G _v t _v)	0.85
Bearing (F _{cL} A) Plywood OSB	0.50 0.20
Nail withdrawal strength	0.75
Wood screw withdrawal strength and lateral strength for dowel-type fasteners (nails, screws and bolts) of 1/4 inch or less in diameter	NDS Table 10.3.3

APA D510C 2012

University of Michigan, Taubman College

Wood Structures

Slide 9 of 46

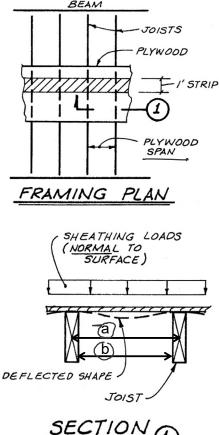

Panel Size Factor

9.3.4 Panel Size Factor, Cs

Reference bending and tension design values (F_bS and F_tA) for wood structural panels are applicable to panels that are 24" or greater in width (i.e., dimension perpendicular to the applied stress). For panels less than 24" in width, reference bending and tension design values shall be multiplied by the panel size factor, C_s , specified in Table 9.3.4.

Factor, C _s
Cs
0.5
(8 + w) / 32
1.0

NDS


Other Considerations

9.4.1 Flatwise Bending

Wood structural panels shall be designed for flexure by checking bending moment, shear, and deflection. Adjusted planar shear shall be used as the shear resistance in checking the shear for panels in flatwise bending. Appropriate beam equations shall be used with the design spans as defined below.

- (a) Bending moment-distance between center-line of supports.
 - (b) Shear-clear span.
- (c) Deflection-clear span plus the support width factor. For 2" nominal and 4" nominal framing, the support width factor is equal to 0.25" and 0.625", respectively.

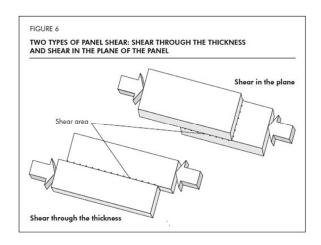
NDS

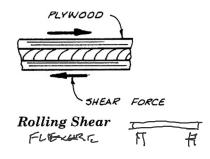
University of Michigan, Taubman College

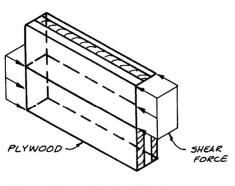
Wood Structures

Slide 11 of 46

Shear

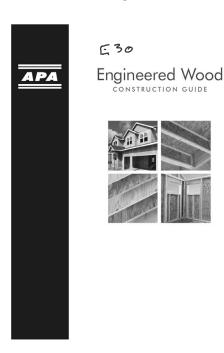

NDS


9.4.4 Planar (Rolling) Shear


The adjusted planar (rolling) shear shall be used in design when the shear force is applied in the plane of wood structural panels.

9.4.5 Through-the-Thickness Shear

The adjusted through-the-thickness shear shall be used in design when the shear force is applied throughthe-thickness of wood structural panels.



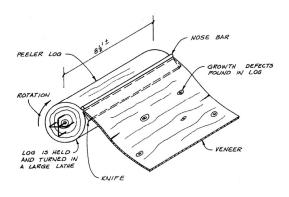
Shear through the Thickness

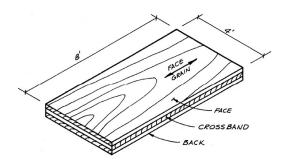
Specification

APA E30 Engineered Wood Construction Guide

APA D510 Panel Design Guide

University of Michigan, Taubman College


Wood Structures

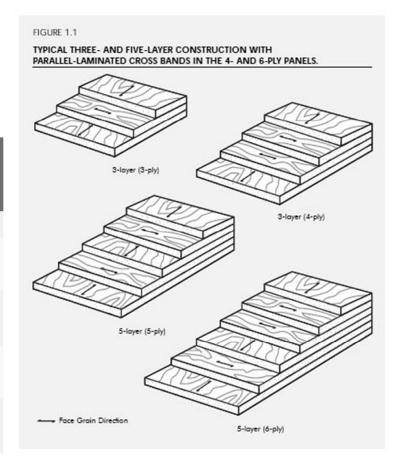

Slide 13 of 46

Plywood

Composition

- peeled as continuous sheets of veneer
- · cut to size
- defects cut out and patched by grade
- layup with odd layers and cross grain
 - each veneer is a ply
 - a layer may have 1 or more plys
 - each layer is cross laminated
 - Face top/outside ply
 - Back bottom/inside ply
 - Crossband inner layer(s) 90° to face/back
 - Center inner layer(s) parallel with face/back
- glued and pressed
- finished (sanding levels)
- nominal dimension: 4' x 8'
 - special sizes 4' x 10' or 4' x 12'
- tolerance 0" to 1/8" undersized
- thickness generally 1/32 undersize

Layers and Plys



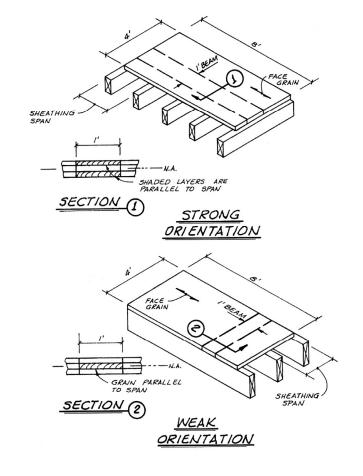
1/2"

3/4"

15/32"

23/32"

APA D510


University of Michigan, Taubman College

Wood Structures

Slide 15 of 46

Span Direction

strong direction vs. weak direction

Species Classification

Groups by strength

- 1 4 are structural
- group 1 is strongest
- Structural 1 has group 1 all plys
- group 4 is weakest
- group 5 is not rated

TABLE 1

CLASSIFICATION OF SPECIES(e)

Group 1	Gro	Group 2 Group 3		Group 4	Group 5
North American S	pecies – Applicable t	o trees grown in No	orth America		
Beech, American Birch Sweet Yellow Douglas-fir ^(b) Larch, Western Maple, Sugar Pine, Southern Loblolly Longleaf Shortleaf Slash Tanoak	Cedar, Port Orford Cypress Douglas-fir ^(b) Fir Balsam California Red Grand Noble Pacific Silver White Hemlock, Western Maple, Black	Pine Pond Red Virginia Western White Spruce Black Red Sirka Sweetgum Tamarack Yellow Poplar	Alder, Red Birch, Paper Cedar, Alaska Fir, Subalpine Hemlock, Eastern Maple, Bigleaf Pine Jack Lodgepole Ponderosa Spruce Redwood Spruce Engelmann White	Aspen Bigtooth Quaking Cedar Incense Western Red Cottonwood Eastern Black (W. Poplar) Pine Eastern White Sugar	Basswood Poplar, Balsam
Non North Americ				297-374	
Apitong ^{(c)(d)} Kapur ^(c) Keruing ^{(c)(d)} Pine Caribbean	Lauan Almon Bagtikan Mayapis Red Lauan	Mengkulang(c) Meranti, Red ^{(c)(e)} Mersawa ^(c)		Cativo	

- (a) Table 1 species classified in accordance with ASTM D2555 as discussed in Appendix A of Voluntary Product Standard PS 1-09, Structural Plywood, APA Form L870. The species groupings are only valid for species grown in the regions referenced in Appendix A of PS 1-09, (See Section 5.2.1. of PS 1-09 for additional information.)
- (b) Douglas-fir from trees grown in the states of Washington, Oregon, California, Idaho, Montana, Wyoming, and the Canadian Provinces of Alberta and British Columbia shall be classed as Group 1 Douglas-fir. Douglas-fir from trees grown in the states of Nevada, Utah, Colorado, Arizona and New Mexico shall be classed as Group 2 Douglas-fir.
- (c) Each of these names represents a trade group of woods consisting of a number of closely related species.
- (d) Species from the genus Dipterocarpus marketed collectively: Apitong if originating in the Philippines, Keruing if originating in Malaysia or Indonesia.
- (e) Red Meranti shall be limited to species having a specific gravity of 0.41 or more based on green volume and oven dry weight

APA D510

Ocote

University of Michigan, Taubman College

Wood Structures

Tangile White Lauan

Slide 17 of 46

Veneer Grades

APA D510

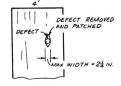
TABLE 2

VENEER GRADES

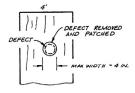
Smooth, paintable. Not more than 18 neatly made repairs, boat, sled, or router type, and parallel to grain, permitted. Wood or synthetic repairs permitted. May be used for natural finish in less demanding applications.

Solid surface. Shims, sled or router repairs, and tight knots to 1 inch across grain permitted. Wood or synthetic repairs permitted. Some minor splits permitted.

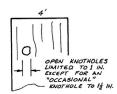
Improved C veneer with splits limited to 1/8-inch width and knotholes or other open defects limited to 1/4 x 1/2 inch. Wood or synthetic repairs permitted. Admits some broken grain.



Tight knots to 1-1/2 inches. Knotholes to 1 inch across grain and some to 1-1/2 inches if total width of knots and knotholes is within specified limits. Synthetic or wood repairs. Discoloration and sanding defects that do not impair strength permitted. Limited splits allowed. Stitching permitted.



Knots and knotholes to 2-1/2-inch width across grain and 1/2 inch larger within specified limits. Limited splits are permitted. Stitching permitted. Limited to Exposure 1 panels.


A and C are structurally similar (C can upgrade to A) B and D are structurally similar (D can upgrade to B) A and B are usually face veneers, C and D are inner

TYP. PATCH IN AN "A" VENEER

TYP. PATCH IN A "B" VENEER

TYP. KNOTHOLE

TYP. KNOTHOLE IN A "D" VENEER

Exposure Classification

Exterior

- Waterproof Glue
- Permanently exposed to weather
- C-grade or better

Exposure 1

- Waterproof glue
- Temporarily in weather
- D or C grade

Exposure 2 – IMG

- Intermediate glue
- Intermediate resistance to moisture
- High humidity

Interior

- Permanently protected
- Short periods of 90% humidity

				anel truction
Panel Grade	Description & Use	Common Performance Categories	OSB	Plywood
APA RATED SHEATHING EXP 1	Unsanded sheathing grade for wall, roof, subflooring, and industrial applications such as pallets and for engineering design with proper capacities.	5/16, 3/8, 7/16*, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
APA STRUCTURAL I RATED SHEATHING EXP 1	Panel grades to use where shear and cross-panel strength properties are of maximum importance.	3/8, 7/16*, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
APA RATED STURD-I-FLOOR EXP 1	Combination subfloor-underlayment. Provides smooth surface for application of carpet and pad. Possesses high concentrated and impact load resistance during con- struction and occupancy. Touch-sanded. Available with tongue-and-groove edges.	19/32, 5/8, 23/32, 3/4, 7/8, 1, 1-3/32, 1-1/8	Yes	Yes
APA UNDERLAYMENT EXP 1	For underlayment under carpet and pad. Touch-sanded. Available with tongue-and-groove edges for panels with Performance Categories of 19/32 or greater.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes
APA C-C Plugged EXT	For underlayment, refrigerated or controlled atmosphere storage rooms, open soffits and other similar applications where continuous or severe moisture may be present. Touch-sanded. Available with tongue-and-groove edges for panels with Performance Categories of 19/32 or greater.	1/2, 19/32, 5/8, 23/32, 3/4	No	Yes
APA Sanded Grades EXP 1 or EXT	Generally applied where a high quality surface is required. Includes APA A-A, A-B, A-C, A-D, B-B, B-C and B-D grades.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes
APA MARINE EXT	Superior Exterior plywood made only with Douglas-fir or Western Larch. Special solid-core construction. Available with MDO or HDO face. Ideal for boat hull construction.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes

APA D510

TABLE 3

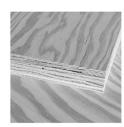
University of Michigan, Taubman College

Wood Structures

Slide 19 of 46

Types of Standards

Product Standard (PS 1)


- · original standard
- originally prescriptive, but now also performance
- plywood only

Performance Standard (PS 2)

- newer type
- performance based
- all panel types OSB, plywood, composite, etc.

OLUNTARY PRODUCT STANDARD

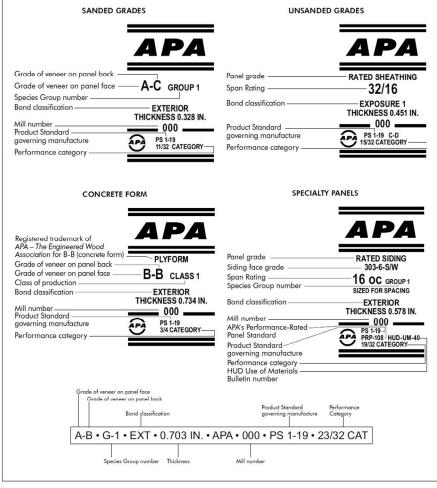
PS 1-19 Structural Plywood

Effective Date December 1, 2019 eproduced from copy furnished by the Office of Standards Services, National Institute of Standards and Technology

VOLUNTARY PRODUCT STANDARD

PS 2-18
Performance Standard
for Wood Structural Panels

Effective Date March 30, 2019

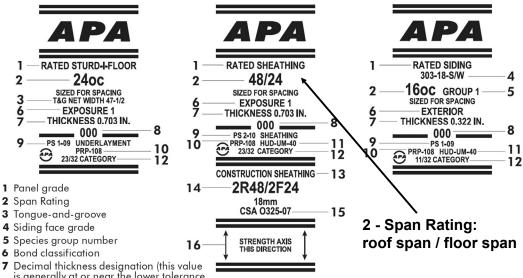

scheed from copy furnished by the Office of Standards Services,
National Institute of Standards and Technology

APA

Typical Trademarks

Typical APA marks showing:

- exposure
- grade and group
- class or span rating
- bond classification
- thickness
- performance catagory


University of Michigan, Taubman College

APA L870 PS 1-19

Wood Structures

Slide 21 of 46

Typical Trademarks

NC.
NIC
ING
l Panel
kness
n.)
16
16
16
/8
16
2, 1/2
2, 5/8
2, 3/4
/8

APA RATED S	TURD-I-FLOOR
Panel	Typical Panel
Span	Thickness
Rating	(in.)
16 oc	19/32, 5/8
20 oc	19/32, 5/8
24 oc	23/32, 3/4
32 oc	7/8
48 oc	1-3/32, 1-1/8

Typical Trademarks

North American Sp Beech, American		up 2	Group 3	Group 4	Group 5
Reach American	pecies – Applicable t	o trees grown in No	orth America		
Birch Sweet Yellow Douglas-fir® Larch, Western Maple, Sugar Pine, Southern Loblolly Longleaf Shortleaf Slash Tanoak	Cedar, Port Orford Cypress Douglas-fir th Fir Balsam California Red Grand Noble Pacific Silver White Hemlock, Western Maple, Black	Pine Pond Red Virginia Western White Spruce Black Red Sirika Sweetgum Tamarack Yellow Poplar	Aldar, Rad Birch, Paper Cedar, Alaska Fir, Subalpine Hemlock, Eastern Maple, Bigleaf Pine Jack Lodgepole Ponderosa Spruce Radwood Spruce Engelmann White	Aspan Bigtooth Quaking Cedar Incense Western Red Cottonwood Eastern Black (W. Poplar) Pine Eastern White Sugar	Basswood Poplar, Balsam
Non North Americ					
Apitong(sid) Kapur(sid) Keruing(sid) Pine Caribbean Ocote	Lauan Almon Bagtikan Mayapis Red Lauan Tangile White Lauan	Mengkulang।व Meranti, Red।वाम Mersawa।व		Cativo	
Plywood, APA Form L (See Section 5.2.1. of b) Douglas-fir from tree of Alberta and British	L870. The species groupin of PS 1-09 for additional in the states of W	gs are only valid for spe formation.) 'ashington, Oregon, Co nd as Group 1 Douglas	cies grown in the region lifornia, Idaho, Montano fir. Doualas-fir from tree	stary Product Standard PS 1- s referenced in Appendix A s, Wyoming, and the Canad s grown in the states of Nev	of PS 1-09. lian Provinces
c) Each of these names	represents a trade group	of woods consisting of	a number of closely relat		
 d) Species from the gen Indonesia. 	ius Dipterocarpus markete	ed collectively: Apitong	if originating in the Philip	pines, Keruing if originating	g in Malaysia

KEY TO SPAN	
RATING AND	
SPECIES GROUP	٠.

For panels with "Span Rating" as across top, and thickness as at left, use stress for species group given in table.

(1) Thicknesses not applicable to APA RATED STURD-I-FLOOR.
(2) For APA RATED STURD-I-FLOOR 24 oc, use Group 4 stresses.

	12/0	16/0	20/0	24/0	32/16	40/20	48/24	
Thickness					Span Rati	ng (STUR	D-I-FLOO	R grade)
(in.)					16 oc	20 ос	24 oc	48 oc
5/16	4	3	1					
3/8			4	1				
15/32 & 1/2				4	1(1)			
19/32 & 5/8					4	1		
23/32 & 3/4						4	1	
7/8							3(2)	
1-1/8								1

Plywood Grade	Description and Use	Typical Trademarks			Common Thicknesses	Grade Stress	Species	Section	
	and Use	Irademarks	Face	Back	Inner	Inicknesses	Level (Table 3)	Group	Property Table
APA RATED SHEATHING EXP 1 or 2 ⁽³⁾	Unsanded sheathing grade for wall, roof, suflooring, and industrial applications such as pallets and for engineering design, with proper stresses. Manufactured with intermediate and exterior glue. (1) For permanent exposure to weather or moisture only Esterior hype plywood is suitable.	APA w00000000000000000000000000000000000	С	D	D	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	See "Key to Span Rating"	Table 1 (unsanded)
APA STRUCTURAL I RATED SHEATHING EXP 1 ⁽³⁾	Phywood grades to use where shea and cross-panel strength propeties are of maximum importance. Made with setterior glue only. Structural I is made from all Group 1 woods.	SAPA SATIO SPEADWING SHIPSCHILLE 1 24/0 34 BOS SEDIO SPEADWING SEDIO SPEADWI	С	D	D	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	S-2	Group 1	Table 2 (unsanded)
APA RATED STURD-I-FLOOR EXP 1 or 2 ⁽³⁾	For combination subfloor- underlayment. Provides smooth surface for application of carpet and pad. Possesses high concer- trated and impad load resistance during construction and occupancy. Manufactured with intermediate and exterior glue. Touch-sanded.(4) Available with tongue-and-groove edges.(5)	APA proceedings and proceedings and proceedings and proceedings and proceedings and proceedings and proceedings are proceedings and proceedings are proceedings and proceedings are proceedings and proceedings are proceedings and proceedings and proceedings are proceedings and proceeding	C plugged	D	C & D	19/32, 5/8, 23/32, 3/4, 1-1/8 (2-4-1)	\$-3(1)	See "Key to Span Rating"	Table 1 (touch-sanded
APA UNDERLAYMENT EXP 1, 2 or INT	For underlayment under carpet and pad. Available with exterior glue. Touch-sanded. Available with tongue-and-groove edges.(5)	APA w000 TRESSURE UNCOLUMN C GROUP 1 LEFOURE 1	C plugged	D	C & D	1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	As specified	Table 1 (touch-sander
APA C-D PLUGGED EXP 1, 2 or INT	For built-ins, wall and ceiling file backing, Not for underlayment. Available with saterior glue. Touch-sanded.(5)	APA THE ENGINEERS THE OFFICE OF THE CONTROL OF THE	C	D	D	1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	As Specified	Table 1 (touch-sanded
APA APPEARANCE GRADES EXP 1, 2 or INT	Generally applied where a high qualify surface is required. Includes APA N-N, N-A, N-B, N-D, A-A, A-B, A-D, B-B, and B-D INT grades.(3)	APA w00078000000000000000000000000000000000	B or better	D or better	C & D	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	S-3(1)	As Specified	Table 1 (sanded)


APA Y510 Plywood Design Specification

University of Michigan, Taubman College

Wood Structures

Slide 23 of 46

Design Aids

NDS – 2018 Manual

Load-Span Tables for APA Structural-Use Panels Number (2236) February 2011 Load-span tables for specific structural use panel applications are included in several APA publications. Recommended loads for sheathing and flooring applications in these publications directly reflect minimum performance criteria given in APA PR-108, for performance Standard for Wood-Board Structural-Use Panels, Form 3530, and Volumary Product Standard 187 20-01, Professionace Standard for Wood-Board Structural-Use Panels, Form 3530, a result, for and preperties a large term of the performance of th

APA - Q225

Design Aids

TABLE 1a

UNIFORM LOADS (PSF) ON APA RATED **PLYWOOD SHEATHING.**MULTI-SPAN, NORMAL DURATION OF LOAD, DRY CONDITIONS, PANELS 24 INCHES OR WIDER

Strength Axis(a) Perpendicular to Supports Span Center-to-Center of Supports Parallel to Supports Span Center-to-Center Span Rating(b) Governed of Supports (inches) (inches) L/360 L/240 24/0 L/180 574 216 118 Bending L/360 544 205 112 54 1/240 816 307 168 32/16 L/180 1,088 409 226 178 381 276 Shear L/360 1,088 409 224 108 53 43 38 65 57 L/240 1,631 614 336 163

87 76 73 46

94 76 67

31 15

1,381 1,000 619

819 593

283 106

2,175 818 448

521 293 203

3,828 1,440 788

467 338 277 218

1,914 720 394 191

775 436 303 194

2,871 1,080 591 286 140 114 100

APA - Q225

40/20

48/24

L/180

Shear L/360

L/240

L/180

Shear

Bending

Bending

University of Michigan, Taubman College

Wood Structures

Slide 25 of 46

Design Aids

Panel Grade		Common	Panel Construction		
and Bond Classification	Description & Use	Performance Category (in.)	OSB	Plywood Minimum Veneer Grade	
Sheathing EXP 1	Unsanded sheathing grade for wall, roof, subflooring, and industrial applications such as pallets and for engineering design with proper capacities.	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes	
Structural I Sheathing EXP 1	Panel grades to use where shear and cross- panel strength properties are of maximum importance. Plywood Structural I is made from all Group 1 woods.	3/8, 7/16, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes	
Single Floor EXP 1	Combination subfloor-underlayment. Provides smooth surface for application of carpet and pad. Possesses high concentrated and impact load resistance during construction and occupancy. Touch-sanded. Available with tongue-and-groove edges.	19/32, 5/8, 23/32, 3/4, 7/8, 1, 1-3/32, 1-1/8	Yes	Yes	
Underlayment EXP 1 or EXT	For underlayment under carpet and pad. Available with exterior glue. Touch-sanded or sanded. Panels with performance category of 19/32 or greater may be available with tongue-and-groove edges.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D	
C-D-Plugged EXP 1	For built-ins, wall and ceiling tile backing. Not for underlayment. Touch-sanded.	1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D	
Sanded Grades EXP 1 or EXT	Generally applied where a high-quality surface is required. Includes APA A-A, A-C, A-D, B-B, B-C, and B-D grades.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face B or better, back D or better, inner C & D	
Marine EXT	Superior Exterior-type plywood made only with Douglas-fir or western larch. Special solid-core construction. Available with medium density overlay (MDO) or high density overlay (HDO) face. Ideal for boat hull construction.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face A or face B, back A or inner B	

NDS - Manual

University of Michigan, Taubman College

Wood Structures

Slide 26 of 46

^{571 414 339 267 211}

⁽a) The strength axis is the long panel dimension unless otherwise identified.
(b) Nominal thickness may vary within Span Rating. For range of thicknesses, see Table 5 of APA's Panel Design Specification, Form D510.

⁽c) Tabulated values are based on the most conservative plywood construction, as shown in Table 6. Some capacities may be increased by application of formulas in Panel Design Specification, Form D510.

Section Properties

TABLE 12

PANEL SECTION PROPERTIES(0)

Performance	Approximate Weight ^(b) (psf)		Nominal Thickness Area t A		Moment of Inertia	Section Modulus S	Statical Moment Q	Shear Constant Ib/Q
Category	Plywood	OSB	(in.)	(in.2/ft)	(in.4/ft)	(in.3/ft)	(in.3/ft)	(in.2/ft)
3/8	1.1	1.2	.375	4.500	.053	.281	.211	3.000
7/16	1.3	1.4	.437	5.250	.084	.383	.287	3.500
15/32	1.4	1.5	.469	5.625	.103	.440	.330	3.750
1/2	1.5	1.7	.500	6.000	.125	.500	.375	4.000
19/32	1.8	2.0	.594	7.125	.209	.705	.529	4.750
5/8	1.9	2.1	.625	7.500	.244	.781	.586	5.000
23/32	2.2	2.4	.719	8.625	.371	1.033	.775	5.750
3/4	2.3	2.5	.750	9.000	.422	1.125	.844	6.000
7/8	2.6	2.9	.875	10.500	.670	1.531	1.148	7.000
1	3.0	3.3	1.000	12.000	1.000	2.000	1.500	8.000
1-1/8	3.3	3.6	1.125	13.500	1.424	2.531	1.898	9.000

See Section 6 for conversion factors.

APA D510

University of Michigan, Taubman College

Wood Structures

Slide 27 of 46

Span Rating Chart

100	St	ress Parallel 1	to Strength A	cis	Stress F	Perpendicul	ar to Streng	th Axis
Span _		Plywood				Plywood		98
Rating	3-ply	4-ply	5-ply	OSB	3-ply	4-ply	5-ply	OSB
ANEL BE	NDING STIFF	NESS, EI (Ibf-i	n.²/ft of pane	l width)	0.00		-	
24/0	66,000	66,000	66,000	60,000	3,600	7,900	11,000	11,000
24/16	86,000	86,000	86,000	78,000	5,200	11,500	16,000	16,000
32/16	125,000	125,000	125,000	115,000	8,100	18,000	25,000	25,000
40/20	250,000	250,000	250,000	225,000	18,000	39,500	56,000	56,000
48/24	NA	440,000	440,000	400,000	NA	65,000	91,500	91,500
16 oc	165,000	165,000	165,000	150,000	11,000	24,000	34,000	34,000
20 oc	230,000	230,000	230,000	210,000	13,000	28,500	40,500	40,500
24 oc	NA	330,000	330,000	300,000	NA	57,000	80,500	80,500
32 oc 48 oc	NA NA	NA NA	715,000	650,000	NA NA	NA NA	235,000	235,000
			1,265,000	1,150,000	NA	NA	495,000	495,000
	Structural I M 1.0	1.0	1.0	1.0	1.5	1.5	1.6	1.0
ANEL BEI	NDING STREN				1.5	1.0	1.0	- 1.0
24/0	250	275	300	300	54	65	97	97
24/16	320	350	385	385	64	77	115	115
32/16	370	405	445	445	92	110	165	165
40/20	625	690	750	750	150	180	270	270
48/24	NA	930	1,000	1,000	NA	270	405	405
16 oc	415	455	500	500	100	120	180	180
20 oc	480	530	575	575	140	170	250	250
24 oc	NA	705	770	770	NA	260	385	385
32 oc	NA	NA	1,050	1,050	NA	NA	685	685
48 oc	NA	NA NA	1,900	1,900	NA	NA	1,200	1,200
	Structural I M	ultiplier 1.0	1.0	1.0	1.3		1.5	
ANIEL AV	1.0 IAL TENSION,		1.0	1.0	1.3	1.4	1.5	1.5
24/0	2.300	2.300	3.000	2.300	600	600	780	780
24/16	2,600	2,600	3,400	2,600	990	990	1,300	1,300
32/16	2,800	2,800	3,400	2,800	1,250	1,250	1,650	1,650
40/20	2,900	2,900	3,750	2,900	1,600	1,600	2,100	2,100
48/24	NA.	4.000	5,200	4.000	NA NA	1,950	2,550	2,550
16 oc	2.600	2.600	3,400	2.600	1.450	1,450	1,900	1.900
20 oc	2,900	2,900	3,750	2,900	1,600	1,600	2,100	2,100
24 oc	NA.	3,350	4,350	3,350	NA.	1,950	2,550	2,550
32 oc	NA	NA.	5,200	4.000	NA	NA	3,250	3,250
48 oc	NA	NA	7,300	5,600	NA	NA	4,750	4,750
	Structural I M	ultiplier						
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	AL COMPRES				0.50-	0.75	0.75	0.5
24/0 24/16	2,850 3,250	4,300 4,900	4,300 4,900	2,850 3.250	2,500 2.500	3,750 3,750	3,750 3,750	2,500
32/16	3,250	5,350	5,350	3,250	3,100	4,650	4,650	3,100
40/20	4,200	6,300	6,300	4,200	4.000	6,000	6,000	4,000
48/24	4,200 NA	7,500	7,500	5,000	4,000 NA	7,200	7,200	4,300
16 oc	4.000	6.000	6.000	4.000	3.600	5,400	5,400	3,600
20 oc	4.200	6.300	6.300	4,200	4.000	6.000	6.000	4.000
24 oc	4,200 NA	7.500	7,500	5,000	4,000 NA	7.200	7,200	4,300
32 oc	NA	NA.	9,450	6.300	NA	NA.	9,300	6,200
48 oc	NA	NA	12,150	8,100	NA	NA	10,800	6,750
	Structural I M	ultiplier						
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

APA D510

University of Michigan, Taubman College

Wood Structures

Slide 28 of 46

⁽a) Properties based on rectangular cross section of 1-ft width.

⁽b) Approximate weight for calculating actual dead loads of the panel.

Span Rating Chart (continued)

	PANELS DESIGI		to Strength Axi	ic	Stre	ss Perpendicu	lar to Strengt	h Avis
		Plywood	o vii ciigiii Ax			Plywood	nai io sircingi	
Span Rating	3-ply	4-ply	5-ply	OSB	3-ply	4-ply	5-ply	OSB
	AXIAL STIFFNE				- 1-7		- 1-7	
24/0	3,350,000	3,350,000	3,350,000	3,350,000	2,900,000	2,900,000	2,900,000	2,500,000
24/16	3,800,000	3,800,000	3,800,000	3,800,000	2,900,000	2,900,000	2,900,000	2,700,000
32/16	4,150,000	4,150,000	4,150,000	4,150,000	3,600,000	3,600,000	3,600,000	2,700,000
40/20	5,000,000	5,000,000	5,000,000	5,000,000	4,500,000	4,500,000	4,500,000	2,900,000
48/24	NA	5,850,000	5,850,000	5,850,000	NA	5,000,000	5,000,000	3,300,000
16 oc	4,500,000	4,500,000	4,500,000	4,500,000	4,200,000	4,200,000	4,200,000	2,700,000
20 oc	5,000,000	5,000,000	5,000,000	5,000,000	4,500,000	4,500,000	4,500,000	2,900,000
24 oc	NA	5,850,000	5,850,000	5,850,000	NA	5,000,000	5,000,000	3,300,000
32 oc	NA	NA	7,500,000	7,500,000	NA	NA	7,300,000	4,200,000
48 oc	NA	NA	8,200,000	8,200,000	NA	NA	7,300,000	4,600,000
	Structural I							
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.
	SHEAR IN THE							
24/0	155	155 180	170 195	130 150	275	375	130	13 15
24/16	180 200	200	215	165	315 345	435 480	150 165	16
	245			205		595	205	20
40/20 48/24	NA NA	245 300	265 325	250	430 NA	725	250	
16 oc	245	245	265	205	430	595	205	25 20
20 oc	245	245	265	205	430	595	205	20
24 oc	NA	300	325	250	NA	725	250	25
32 oc	NA NA	NA.	390	300	NA	NA	300	30
48 oc	NA	NA	500	385	NA	NA	385	38
	Structural I							
	1.4	1.4	1.4	1.0	1.4	1.4	1.0	1.
PANEL	RIGIDITY THRO							
24/0	25,000	32,500	37,500	77,500	25,000	32,500	37,500	77,50
24/16	27,000	35,000	40,500	83,500	27,000	35,000	40,500	83,50
32/16	27,000	35,000	40,500	83,500	27,000	35,000	40,500	83,50
40/20	28,500	37,000	43,000	88,500	28,500	37,000	43,000	88,50
48/24	NA	40,500	46,500	96,000	NA	40,500	46,500	96,00
16 oc	27,000	35,000	40,500	83,500	27,000	35,000	40,500	83,50
20 oc	28,000	36,500	42,000	87,000	28,000	36,500	42,000	87,00
24 oc	NA	39,000	45,000	93,000	NA	39,000	45,000	93,00
32 oc	NA	NA	54,000	110,000	NA	NA	54,000	110,00
48 oc	NA	NA	76,000	155,000	NA	NA	76,000	155,00
	Structural I	•		1.0				
	1.3	1.3	1.1	1.0	1.3	1.3	1.1	1.
24/0	SHEAR THROUG	69	80	7in. or snear-	resisting pane	ei ienginj 69	80	15
24/16	57	74	86	165	57	74	86	16
32/16	62	81	93	180	62	81	93	18
40/20	68	88	100	195	68	88	100	19
48/24	NA.	98	115	220	NA.	98	115	22
16 oc	58	75	87	170	58	75	87	17
20 oc	67	87	100	195	67	87	100	19
	NA.	96	110	215	NA	96	110	21
	NA	NA	120	230	NA	NA	120	23
24 oc		NA	160	305	NA	NA	160	30
	NA							
24 oc 32 oc	NA Structural I		100					

APA D510

University of Michigan, Taubman College

Wood Structures

Slide 29 of 46

Capacity Equations

Bending

4.7.1. Uniform loads based on bending strength

The following formulas shall be used for computing loads based on design bending strength capacity (F_bS).

For a single span:

$$w_b = \frac{96 F_b S}{\ell_1^2}$$

For a two-span condition:

$$w_b = \frac{96 \, F_b S}{\ell_1^2}$$

For a three-span condition:

$$w_b = \frac{120 F_b S}{\ell_1^2}$$

Where:

w_b = uniform load based on bending strength (psf)

F_bS = design bending strength capacity (lbf-in./ft)

\(\ell_1\) = span (in., center-to-center of supports)

Note the dimensions as given

APA D510

Capacity Equations

Shear

4.7.2. Uniform loads based on shear strength

The following formulas shall be used for computing loads based on design shear strength capacity (F,[lb/Q]).

For a single span:

$$w_s = \frac{24 F_s(Ib/Q)}{\ell_2}$$

For a two-span condition:

$$w_s = \frac{19.2 F_s(lb/Q)}{\ell_2}$$

For a three-span condition:

$$w_s = \frac{20 F_s(Ib/Q)}{\ell_2}$$

Where:

w_s = uniform load based on shear strength (psf)

 $F_s(Ib/Q)$ = design shear strength capacity (lbf/ft)

 ℓ_2 = clear span (in., center-to-center of supports minus support width)

Note the dimensions as given

APA D510

University of Michigan, Taubman College

Wood Structures

Slide 31 of 46

Capacity Equations

Deflection

4.7.3. Uniform loads based on deflection requirements

The following formulas shall be used for computing deflection under uniform load, or allowable loads based on deflection requirements.

For a single span:

$$\Delta = \frac{w\ell_3^4}{921.6 EI}$$

For a two-span condition:

$$\Delta = \frac{w\ell_3^4}{2220 EI}$$

For a three-span condition:

$$\Delta = \frac{w\ell_3^4}{1743 EI}$$

Where:

 Δ = deflection (in.)

w = uniform load (psf)

EI = design bending stiffness capacity (lbf-in.2/ft)

 ℓ_3 = clear span + SW (in.)

SW = support-width factor, equal to 0.25 inch for two-inch-nominal lumber framing and 0.625 inch for four-inch-nominal lumber framing.

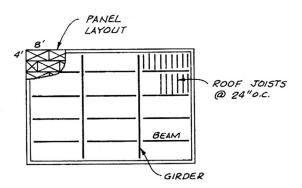
Note the dimensions as given

APA D510

Roof Sheathing Design Example

Given:

flat roof framed as shown roof joists at 24" o.c.


D = 8 psf Lr = 20 psf

deflection limits: Lr = L/240 total = L/180

Find:

panel specifications

 $\begin{array}{l} D=8 \ psf \\ \underline{L_r=20 \ psf} \\ TL=28 \ psf \end{array} \qquad \text{(no snow load)}$

RODF FRAMING PLAN

University of Michigan, Taubman College

Wood Structures

Slide 33 of 46

Roof Sheathing Example

Classification: exterior (protected) sheathing

could use either

also either OSB or plywood

Table M9.1-1 Guide to Panel Use

Panel Grade		Common	Pa	nel Construction
and Bond Classification	Description & Use	Performance Category (in.)	OSB	Plywood Minimum Veneer Grade
Sheathing EXP 1	Unsanded sheathing grade for wall, roof, subflooring, and industrial applications such as pallets and for engineering design with proper capacities.	5/16, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
Structural I Sheathing EXP 1	Panel grades to use where shear and cross- panel strength properties are of maximum importance. Plywood Structural I is made from all Group 1 woods.	3/8, 7/16, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	Yes	Yes
Single Floor EXP 1	Combination subfloor-underlayment. Provides smooth surface for application of carpet and pad. Possesses high concentrated and impact load resistance during construction and occupancy. Touch-sanded. Available with tongue-and-groove edges.	19/32, 5/8, 23/32, 3/4, 7/8, 1, 1-3/32, 1-1/8	Yes	Yes
Underlayment EXP 1 or EXT	For underlayment under carpet and pad. Available with exterior glue. Touch-sanded or sanded. Panels with performance category of 19/32 or greater may be available with tongue- and-groove edges.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D
C-D-Plugged EXP 1	For built-ins, wall and ceiling tile backing. Not for underlayment. Touch-sanded.	1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face C-Plugged, back D, inner D
Sanded Grades EXP 1 or EXT	Generally applied where a high-quality surface is required. Includes APA A-A, A-C, A-D, B-B, B-C, and B-D grades.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face B or better, back D or better, inner C & D
Marine EXT	Superior Exterior-type plywood made only with Douglas-fir or western larch. Special solid-core construction. Available with medium density overlay (MDO) or high density overlay (HDO) face. Ideal for boat hull construction.	1/4, 11/32, 3/8, 15/32, 1/2, 19/32, 5/8, 23/32, 3/4	No	Yes, face A or face B, back A or inner B

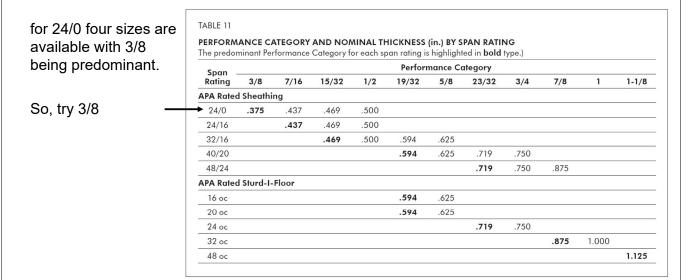
NDS - Manual

University of Michigan, Taubman College

Wood Structures

Slide 34 of 46

Roof Sheathing Example


						1		St	rength A	Axis(a)					
span rating for roof at 24" o.c. = 24/0	Span Rating ^(b)	Load Governed By ^(c)	Ferpendicular to Supports Span Center-to-Center of Supports (inches)								Parallel to Supports Span Center-to-Cente of Supports (inches)				
at 24 0.C 24/0	ell.		12	16	19.2	24	30	32	36	40	48	60	12	16	24
		L/360	287	108	59	29	14	11	10				16		
	7	L/240	431	162	89	43	21	17	15				23		
deflection limits:	24/0	L/180	574	216	118	57	28	23	20				31		
Lr = 20 psf L/240		Bending	208	117	81	52	33	29	19				45		
•		Shear	295	214	175	138	109	102	86				524		
L/240 = 43 psf OK		L/360	544	205	112	54	27	22	19	14			35	13	
·	32/16	L/240 L/180	816 1,088	307 409	168 224	81 108	40	32 43	29 38	21 27			53 70	20 27	
	32/16	Bending	308	173	120	77	53 49	43	38 27	27			70	43	
Total = 28 psf L/180		Shear	381	276	226	178	140	131	111	100			657	476	
•	-	L/360	1,088	409	224	108	53	43	38	27	18		78	29	10
L/180 = 57 psf OK		L/240	1,631	614	336	163	80	65	57	41	27		117	44	15
	40/20	L/180	2,175	818	448	217	106	87	76	55	36		157	59	20
		Bending	521	293	203	130	83	73	46	38	26		125	70	25
bending:		Shear	467	338	277	218	172	161	136	122	106		819	593	367
nof (C)		L/360	1,914	720	394	191	94	76	67	48	31	15	283	106	36
psf (C _D)		L/240	2,871	1,080	591	286	140	114	100	72	47	23	424	160	54
52 (1.25) = 65 psf OK	48/24	L/180	3,828	1,440	788	382	187	152	134	96	63	31	566	213	72
(1127)		Bending	775	436	303	194	124	109	69	56	39	25	225	127	45
	=	Shear	571	414	339	267	211	197	167	150	129	102	1,381	1,000	619
shear:		gth axis is the lo hickness may v	-					see Table	5 of APA's	Panel De	sian Speci	fication. Fo	rm D510.		
Silcui.	(c) Tabulated	values are bas n Panel Design	ed on the	most cons	ervative p	-					-			plication	of

Wood Structures

Roof Sheathing Example

University of Michigan, Taubman College

Performance Category (thickness)

APA - D510

Slide 35 of 46

Roof Sheathing Example

Edge support criteria:

0/24 without edge support can only span 20" (19.2).

So either use:

0/24 x 3/8 with edge support

or

0/24 x 15/32 (or 1/2) without edge support

24/16 x 7/16 without edge support

Panel Edge Support

For certain span ratings, the maximum recommended roof span for sheathing panels is dependent upon panel edge support. Edge support may be provided by lumber blocking, tongue and groove, or panel clips when edge support is required. Table M9.4-1 summarizes the relationship between panel edge support and maximum recommended spans.

Table M9.4-1 Panel Edge Support²

	Maximum Recom	mended Span (in.)		
Sheathing Span Rating	With Edge Support	Without Edge Support		
24/0	24	19.2 ¹		
24/16	24	24		
32/16	32	28		
40/20	40	32		
48/24	48	36		

^{1. 20} in. for 3/8 and 7/16 performance category panels, 24 in. for 15/32 and

NDS - Manual

University of Michigan, Taubman College

Wood Structures

Slide 37 of 46

Roof Sheathing Example

Nailing criteria: 8d nails

at 6" and 12" o.c.

panel edge gap: 1/8"

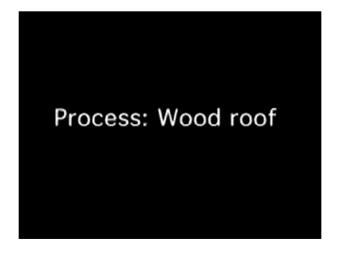
Table M9.4-2 Minimum Nailing for Wood Structural Panel Applications

		Nail S	pacing (in.)			
	Recommended	Panel	Intermediate			
Application	Nail Size & Type	Edges	Supports			
Single Floor-Glue-nailed installation ⁵	Ring- or screw-shank					
16, 20, 24 oc, 3/4 performance category or less	6d ¹	6	12			
24 oc, 7/8 or 1 performance category	$8d^1$	6	12			
32, 48 oc, (32-in. span (c-c) application)	$8d^1$	6	12			
48 oc, (48-in. span (c-c) application)	$8d^2$	6	6			
Single Floor-Nailed-only installation	Ring- or scre	w-shank				
16, 20, 24 oc, 3/4 performance category or less	6d	6	12			
24 oc, 7/8 or 1 performance category	8d	6	12			
32, 48 oc, (32-in. span application)	8d	6	12			
48 oc, (48-in. span application)	$8d^2$	6	6			
Sheathing-Subflooring ³	Common smooth, ring- or screw-shank					
7/16 to 1/2 thick performance category	6d	6	12			
7/8 performance category or less	8d	6	12			
Thicker panels	10d	6	6			
Sheathing-Wall sheathing	Common smooth, ring- or screv	v-shank or gab	vanized box ³			
7/16 performance category or less	6d	6	12			
Over 7/16 performance category	8d	6	12			
Sheathing-Roof sheathing	Common smooth, ring	g- or screw-sh	ank³			
5/16 to 1 performance category	8d	6	124			
Thicker panels	8d ring- or screw-shank	6	124			
	or 10d common smooth					

8d common nails may be substituted if ring- or screw-shank nails are not available.
 10d ring-shank, screw-shank, or common nails may be substituted if supports are dry in accordance with NDS.

Other code-approved fasteners may be used.
 For spans 48 in. or greater, space nails 6 in. at all supports.
 Use only adhesives conforming to ASTM D3498.

University of Michigan, Taubman College


NDS - Manual

Wood Structures

Slide 38 of 46

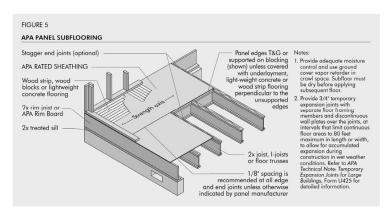
^{1.2} Define the 3-3 and 7/10 performance category panels, 24 in: 10/13/32 and 1/2 performance category panels.
2. Additional edge support is recommended when panel widths are less than 24 inches. Edge support requirements should be obtained from the manufacturer.

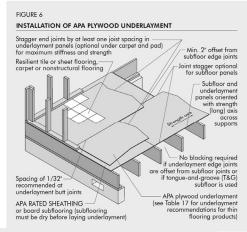
Roof Sheathing

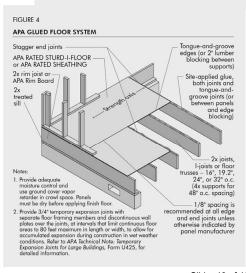
University of Michigan, Taubman College

Wood Structures

Slide 39 of 46

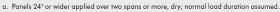

Floor Sheathing


layers:


- subfloor
- underlayment
- · combined subfloor-underlayment

floor types:

subfloor + underlayment subfloor + APA rated sheathing (e.g. wood flooring) combined subfloor-underlayment + carpet



Floor Sheathing

load tables and nailing schedules in APA – E30 limits usually set by point load deflection (person)

			Maximum — Span _ (in.)	Allowable Live Loads (psf) ^b Joist Spacing (in.)							
Span Sp	Sheathing Span	Minimum Panel Performance Category									
	Rating			12	16	19.2	24	32	40	489	
16 oc	24/16, 32/16	7/16 ^d	16	185	100						
20 oc°	40/20	19/32	19.2	270	150	100					
24 oc	48/24	23/32	24	430	240	160	100				
32 oc	NA	7/8	32		405	295	185	100			
48 oc	NA	1-3/32	48			425	290	160	100	55	

- b. 10 psf dead load assumed. Live load deflection limit is I/360.
- c. 4x nominal or double 2x framing
- d. 19/32 is minimum Performance Category of Rated Sturd-I-Floor.
- e. While span rating is shown as 20 oc, the actual joist spacing is 19.2 inches.

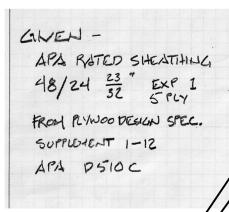
TABLE 16

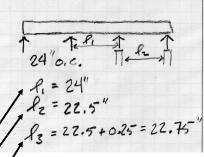
APA PANEL SUBFLOORING (APA RATED SHEATHING) $^{\alpha,b}$

	Panel			Maximum Nail	Maximum Nail Spacing (in.)		
Panel Span Rating	Performance Category	Maximum Span (in.)	Nail Size & Type ^{c,d}	Supported Panel Edgese	Intermediate Supports		
24/16	7/16	16	6d common	6	12		
32/16	15/32, 1/2	16	6d common ^f	6	12		
40/20	19/32, 5/8	19.2 ^f	8d common	6	12		
48/24	23/32, 3/4	24	8d common	6	12		

- a. For subfloor recommendations under ceramic tile, refer to Table 18. For subfloor recommendations under gypsum concrete, contact manufacturer of floor topping.
- b. APA RATED STURD-I-FLOOR may be substituted when the span rating is equal to or greater than tabulated maximum span.
- c. Other code-approved fasteners may be used.
- d. See Table 6, page 17, for nail dimensions
- e. Supported panel joints shall occur approximately along the centerline of framing with a minimum bearing of 1/2 inch. Fasteners shall be located 3/8 inch from panel edges.
- f. Span may be 24 inches if a minimum 1-1/2 inches of lightweight concrete is applied over panels.

University of Michigan, Taubman College


Wood Structures


Slide 41 of 46

Floor Capacity example

Find the floor capacity of the given sheathing

use L/360 deflection limit

9.4.1 Flatwise Bending

Wood structural panels shall be designed for flexure by checking bending moment, shear, and deflection. Adjusted planar shear shall be used as the shear resistance in checking the shear for panels in flatwise bending. Appropriate beam equations shall be used with the design spans as defined below.

- (a) Bending moment-distance between center-line of supports.
- (b) Shear-clear span.
- (c) Deflection-clear span plus the support width factor. For 2" nominal and 4" nominal framing, the support width factor is equal to 0.25" and 0.625", respectively.

NDS

Floor Capacity example

TABLE & :
(STRESS PARALLEL TO STRENGTH)

EI ... = 440,000 PSI/FT

F, S = 1000 "-*/FT

F, (16/Q) = 325 */FT

PER I FT PANCL WIPTH

5-ply

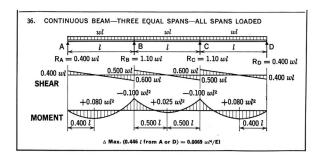
PANEL SHEA	AR IN THE PLAI	NE, F _s (lb/Q) (l	bf/ft of panel	width)
24/0	155	155	170	130
24/16	180	180	195	150
32/16	200	200	215	165
40/20	245	245	265	205
48/24	NA	300	325	250
16 oc	245	245	265	205
20 oc	245	245	265	205
24 oc	NA	300	325	250
32 oc	NA	NA	390	300
48 oc	NA	NA	500	385
S	tructural I Mult	iplier		
	1.4	1.4	1.4	1.0

APA D510 or NDS Manual M9.2-1 to 4

TABLE 8 RATED PANELS DESIGN CAPACITIES

	St	ress Parallel	to Strength A	cis					
Span _		Plywood							
Rating	3-ply	OSB							
PANEL BENDING STIFFNESS, EI (lbf-in.2/ft of panel wid									
24/0	66,000	66,000	66,000	60,000					
24/16	86,000	86,000	86,000	78,000					
32/16	125,000	125,000	125,000	115,000					
40/20	250,000	250,000	250,000	225,000					
48/24	NA	440,000	440,000	400,000					
16 oc	165,000	165,000	165,000	150,000					
20 oc	230,000	230,000	230,000	210,000					
24 oc	NA	330,000	330,000	300,000					
32 oc	NA	NA	715,000	650,000					
48 oc	NA	NA	1,265,000	1,150,000					

Structural I Multiplier


		•		
	1.0	1.0	1.0	1.0
PANEL BENE	ING STRENG	ΓΗ, F _ь S (lbf-i	n./ft of panel	width)
24/0	250	275	300	300
24/16	320	350	385	385
32/16	370	405	445	445
40/20	625	690	750	750
48/24	NA	930	1,000	1,000
16 oc	415	455	500	500
20 oc	480	530	575	575
24 oc	NA	705	770	770
32 oc	NA	NA	1,050	1,050
48 oc	NA	NA	1,900	1,900
St	ructural I Mult	iplier		
	1.0	1.0	1.0	1.0

Slide 43of 46

University of Michigan, Taubman College

Wood Structures

Floor Capacity example

For a three-span condition:

$$w_b = \frac{120 F_b S}{\ell_1^2}$$

For a three-span condition:

$$w_s = \frac{20 F_s(Ib/Q)}{\ell_2}$$

For a three-span condition:

$$\Delta = \frac{\mathrm{w}\ell_3^4}{1743 \, \mathrm{EI}}$$

APA D510

FLEXURE

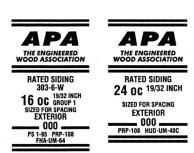
$$W_b = \frac{120(F_b s)}{f_1^2} = \frac{120(1000)}{24^2} = \frac{208 \text{ PSF}}{24^2}$$

SINCAR

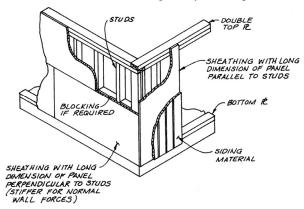
 $W_s = \frac{20(F_b(1b/q))}{f_2} = \frac{20(325)}{22.5} = \frac{288 \text{ PSF}}{22.5}$

DEFLECTION

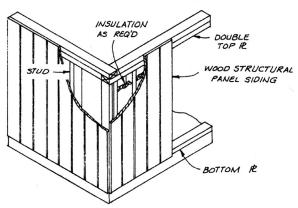
 $\Delta_1 = \frac{W}{3} \frac{f_3^4}{1743 \text{ EL}} = \frac{1(22.75)}{1743(440000)} = 0.000349^{''}$
 $\Delta_{ALL} = \frac{g}{360} = \frac{24}{360} = 0.0667^{''}$
 $W_d = \frac{\Delta_{ALL}}{\Delta_1} = \frac{0.00647}{0.000349} = \frac{190 \text{ PSF}}{1900000000}$


Wall Sheathing and Siding

Types:

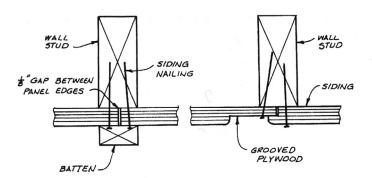

- 1. Separate Sheathing + Siding
 - spanning strong or weak direction
 - blocking required for shear wall
 - nailing by APA chart
 - typ. 6d at 6"o.c. edges and 12"o.c. blocking

2. Combined as one panel

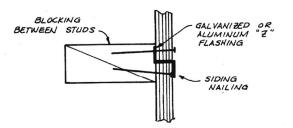

- usually with texture or grooved
- installed vertically (8 ft vertical)
- APA Rated Siding 303
- usually shiplap edges

Wood Structural Panel Sheathing with Separate Siding

Plywood Combined Sheathing-Siding


University of Michigan, Taubman College

Wood Structures


Slide 45 of 46

Wall Sheathing and Siding

Joint details for combined type (single layer)

TYP DETAILS FOR VERTICAL PLYWOOD JOINT

TYP DETAIL FOR HORIZONTAL