

Allowable Stress Design by NDS Compression

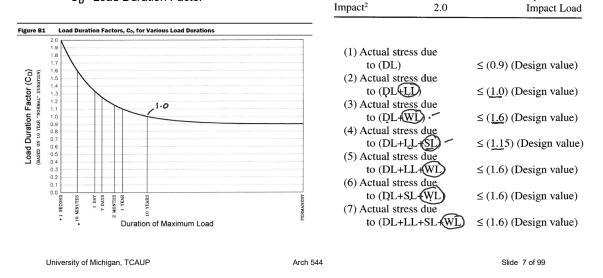
University of Michigan, TCAUP

Wood Structures

Slide 5 of 99

Adjustment Factors

Table 4.3.1	4	Applic	plicability of Adjustment Factors for Sawn Lumber												
		ASD only				AS	SD an	d LR	FD					LRFI only)
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	H Format Conversion Factor	- Resistance Factor	Time Effect Factor
$F_b' = F_b$	х	CD	CM	$\underline{\underline{C}}_t$	$\tilde{C_L}$	C _F	Cfu	\underline{C}_i	Loist Cr	¥ -	-	-	2.54	0.85	λ
$F_t = F_t$	х	CD	См	Ċt	-	CF	-	Ci	-	-	-	-	2.70	0.80	λ
$F_v = F_v$	х	CD	См	Ct	-	-	-	Ci	-	-	-	-	2.88	0.75	λ
$F_c = F_c$	х	CD	См	Ct	-	CF	-	Ci	-	Ср	-	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	х	-	C_{M}	Ct	-	-	-	C_i	-	-	-	$C_{\mathfrak{b}}$	1.67	0.90	-
E' = E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	Ст	-	1.76	0.85	-


Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{b}' = \mathbf{F}_{b} \left(\mathbf{C}_{D} \, \mathbf{C}_{M} \, \mathbf{C}_{t} \, \mathbf{C}_{L} \, \mathbf{C}_{F} \, \mathbf{C}_{fu} \, \mathbf{C}_{i} \, \mathbf{C}_{r} \right)$$

Usage factors for flexure: C_{D} Load Duration Factor

Table 2.3.2 Frequently Used Load

 C_{D}

0.9

1.0

1.15

1.25

1.6

Lr

Load Duration

Permanent PL

Ten years LL

Two months

Seven days

Ten minutes

Duration Factors, C_D¹

Typical Design Loads

Occupancy Live Load

Wind/Earthquake Load

Construction Load

Dead Load

Snow Load

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 ${\sf F}_{\sf b}{\,}' = {\sf F}_{\sf b}\,({\sf C}_{\sf D}\,{\sf C}_{\sf M}\,{\sf C}_{\sf t}\,{\sf C}_{\sf L}\,{\sf C}_{\sf F}\,{\sf C}_{\sf fu}\,{\sf C}_{\sf i}\,{\sf C}_{\sf r}\,)$

Usage factors for flexure: \mathbf{C}_{t} Temperature Factor

able 2.3.3 To	emperature Fa	ctor, Ct		
Reference Design Values	In-Service Moisture -		Ct	
values	Conditions ¹	T≤ <u>100</u> °F	100°F <t≤<u>125°F</t≤<u>	125°F <t≤150°f< th=""></t≤150°f<>
F _t , E, E _{min}	Wet or Dry	1.0	0.9 •	0.9
E E E and E	Dry	1.0	0.8 .	0.7
\underline{F}_{b} , F_{v} , F_{c} , and $F_{c\perp}$	Wet	1.0	0.7 /	(0.5)

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \, \mathbf{C}_{\mathrm{M}} \, \mathbf{C}_{\mathrm{t}} \, \mathbf{C}_{\mathrm{L}} \, \mathbf{C}_{\mathrm{F}} \, \mathbf{C}_{\mathrm{fu}} \, \mathbf{C}_{\mathrm{i}} \, \mathbf{C}_{\mathrm{r}} \right)$

Usage factors for flexure: C_M Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service	Factors,	См	
Fb	F_t	F_{v}	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{\tiny min}}$
0.85*	1.0	0.97	0.67	0.8**	0.9
* when (E _b)	$(C_{\rm E}) \le 1.15$	$0 \text{ psi}, C_M = 1.$	0		

** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

		F	b	Ft	Fc
		Thickness			
Grades	Width (depth)	(2) & 3"	4"		
	(2", 3", & (4")	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
1	14" & wider	0.9	<u>1.0</u>	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
-	8" & wider	Use No.3 Grade tabulated design		values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
, Standard					
Utility	4"	1.0	1.0	1.0	1.0
1	2" & 3"	0.4	_	0.4	0.6
niversity of Michigan, TCAUP	Arch 54	4		SI	ide 9 of 99

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

C_{fu} Flat Use

C_r Repetitive Member Factor

Flat Use Factor, Cfu

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:

Flat	Flat Use Factors, C _{fu}									
Width	Thickness (breadth)								
(depth)	2" & 3"	4"								
2" & 3"	1.0	_								
4"	1.1	1.0								
5"	1.1	1.05								
6"	1.15	1.05								
8"	1.15.	1.05								
10" & wider	1.2	1.1								

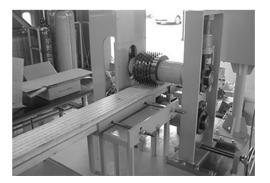
Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade


$$\mathbf{F}_{\mathbf{b}}' = \mathbf{F}_{\mathbf{b}} \left(\mathbf{C}_{\mathbf{D}} \, \mathbf{C}_{\mathbf{M}} \, \mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{L}} \, \mathbf{C}_{\mathbf{F}} \, \mathbf{C}_{\mathbf{fu}} \, \mathbf{C}_{\mathbf{i}} \, \mathbf{C}_{\mathbf{r}} \right)$$

Usage factors for flexure: \mathbf{C}_i Incising Factor

Table 4.3.8 Incising Factors, C	Table	4.3.8	Incising	Factors, C	2.
---------------------------------	-------	-------	----------	------------	----

Design Value	Ci	
E, E _{min}	0.95	
F_b , F_t , F_c , F_v	0.80	
F _{c⊥}	0 <u>.80</u> 1.00	

University of Michigan, TCAUP

Arch 544

Slide 11 of 99

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{\mathrm{b}}{}^{\prime} = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \ \mathbf{C}_{\mathrm{M}} \ \mathbf{C}_{\mathrm{t}} \ \mathbf{C}_{\mathrm{L}} \ \mathbf{C}_{\mathrm{F}} \ \mathbf{C}_{\mathrm{fu}} \ \mathbf{C}_{\mathrm{i}} \ \mathbf{C}_{\mathrm{r}} \right)$$

Usage factors for flexure: $\mathbf{C}_{\mathbf{L}}$ Beam Stability Factor

3.3.3 Beam Stability Factor, CL

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

3.3.3.4 Where the depth of a bending member exceeds its breadth, d > b, lateral support shall be provided at points of bearing to prevent rotation.

 $C_L = 1$

4.4.1 Stability of Bending Members

2x4 (a) $d/b \le 2$; no lateral support shall be required.

- 2x6-8 (b) 2 < d/b ≤ 4; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) 4 < d/b ≤ 5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) $5 < d/b \le 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) $6 < d/b \le 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
	2 to 1	None	
C _L = 1.0 when bracing meets 4.4.1 for the depth/width ratio Otherwise	^{3 to 1} 2x6 2x8	<u>The ends</u> of the beam should be held in position	EINP BLOCKING
C _L < 1.0 calculate factor using section 3.3.3	^{5 to 1} 2x10	Hold compression edge in line (continuously)	NAULING SHEATHING/JECHING JPIST OF BEAM
	^{6 to 1} 2x12	Diagonal bridging should be used	SHEATHING/DEFING BIST BHAPPING
	^{7 to 1} 2x14	Both edges of the beam should be held in line	BHPAINA HILED SHEATHING O FROM Y TO FROM TO
		Both edges of the beam should be held in line	
University of Michigan, TCAUP		Arch 544	Slide 13 of 99

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_L is calculated using equation 3.3-6

The maximum allowable slenderness, $\rm R_{\rm B}$ is 50

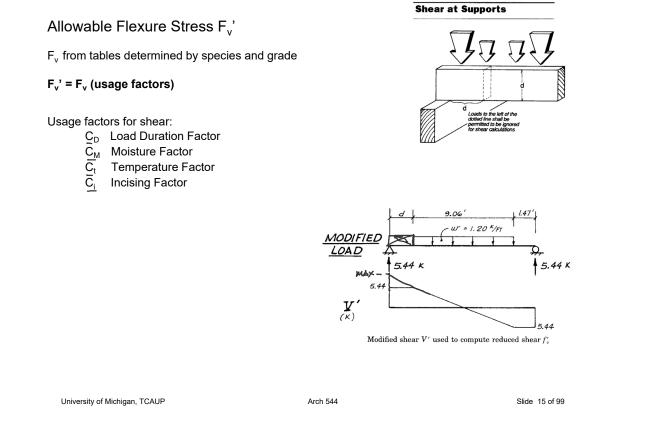
Table 3.3.3 Effective Length (ℓ_{\bullet})	for Bending Me	mbers	
Cantilever ¹	when $\ell_v/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ_{e} =1.33 ℓ_{u}	at a second second second	$\ell_{e}=0.90 \ \ell_{u}+3d$
Concentrated load at unsupported end	ℓ_{e} =1.87 ℓ_{u}		ℓ_{e} =1.44 ℓ_{u} + 3d
Single Span Beam ^{1,2}	when $\ell_{\rm u}/{\rm d} < 7$	1	when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}=2.06\ell_{\rm u}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	ℓ_e =1.80 ℓ_u		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e} = 1.11 \ \ell_{\rm u}$	5 es.
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}=1.68 \ \ell_{\rm u}$	× .
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points	-	$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		ℓ_{e} =1.68 ℓ_{u}	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		ℓ_{e} =1.78 ℓ_{u}	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		ℓ _e =1.84 ℓ _u	
Equal end moments	1	$\ell_e=1.84$ ℓ_u	far in the second

 $\begin{array}{l} \ell_e = 1.63 \ \ell_u + 3d \quad \text{when } 7 \leq \ell_v/d \leq 14.3 \\ \ell_e = 1.84 \ \ell_u \qquad \text{when } \ell_v/d > 14.3 \end{array} \\ 2. \ \text{Multiple span applications shall be based on table values or engineering analysis.} \end{array}$

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

3.3.3.7 The slenderness ratio for bending members, $R_{\rm B},$ shall not exceed 50. \cdot

3.3.3.8 The beam stability factor shall be calculated as follows:


$$\underline{C_{L}} = \frac{1 + (F_{be}/F_{b})}{1.9} - \sqrt{\left[\frac{1 + (F_{be}/F_{b})}{1.9}\right]^{2} - (F_{be}/F_{b})^{2}} (3.3-6)$$

where:

 $R_{\rm B} = \sqrt{\frac{\ell_{\rm e} d}{b^2}}$

$$\begin{split} F_{b}^{*} &= \text{reference bending design value multiplied by} \\ &= \text{all applicable adjustment factors except } C_{ru}, \\ &= C_{V} \text{ (when } C_{V} \leq 1.0\text{), and } C_{L} \text{ (see 2.3), psi} \\ \hline \textbf{E}_{bE} &= \frac{1.20 \text{ E}_{min}}{\text{-}} \textbf{R}_{B}^{2} \textbf{R}$$

Adjustment Factors for Shear

Analysis Procedure

Given: loading, member size, material and span. Req'd: Safe or Unsafe

1. Find Max Shear & Moment 🛩

- Simple case equations •
- Complex case diagrams •

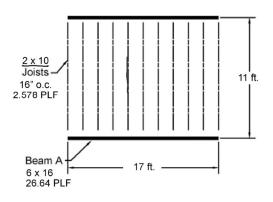
2. Determine actual stresses 🛩

- f_b = M/S
- f_v = 1.5 V/A

3. Determine allowable stresses

- F_b and F_v (from NDS) ອນເ-
- F_b' = F_b (usage factors)
- F_v' = F_v (usage factors)

4. Check that actual \leq allowable

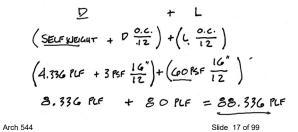

- $f_b \leq F'_b$ $f_v \leq F'_v$ \sim
- 5. Check deflection <
- 6. Check bearing (F_b = Reaction/A_{bearing})

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	A	S _{xx}	I _{xx}	S _{yy}	I _{vv}
	in. x in.	in.2	in. ³	in.⁴	in. ³	in.⁴
Boards ¹						
1x3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1x4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

from NDS 2012

Given:

DATASET: 1 -2-	
Span A	17 FT
Span B	11 FT
Joist O.C. Spacing	16 IN
Wood Density	45 PCF
Joist Size	2x10 NOMINAL
Beam Size	6x16 NOMINAL
Floor DL (not including joist)	<u>3 PSF</u>
Occupancy or Use	assembly area - 60 rsa



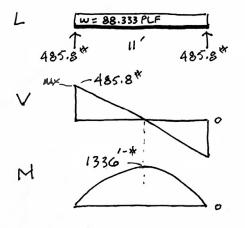
Req'd: pass or fail for floor joist

University of Michigan, TCAUP

ASCE-7 Table 4.3-1: Live Load = 60 PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:

Analysis Example (joist)

1. Find Max Shear & Moment on Joist


By equations:

Shear:

$$\frac{wl}{2} = \frac{88.336(11)}{2} = \frac{485.848}{2}$$
 lbs

Moment:

$$\frac{wl^2}{8} = \frac{88.336(11^2)}{8} = 1336.08$$
 ft-lbs

- 2. Determine actual stresses in joists
 - f_b = M/S
 - f_v = 1.5 V/A

$$f_{b} = \frac{M}{s_{x}} = \frac{1336' - (12)}{21.39 \text{ m}^{3}} = \frac{749.5}{749.5} \text{ Psi}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5(485.8)^{4}}{13.88 \text{ m}^{2}} = \frac{52.5}{751} \text{ Psi}$$

University of Michigan, TCAUP

Arch 544

Slide 19 of 99

Table 4AReference Design Values for Visually Graded Dimension Lumber
(2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

	1			Decign v	alues in pounds p	er equare inch (r	ei)				
Species and commercial Size grade classificatio		Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency	
			E	Ft	Fv	F₀ <u>⊥</u>	F。	E	Emin	G	
SPRUCE-PINE-FIR											
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000			
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000			
No. 3		500	250	135	425	650	1,200,000	440,000			
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA	
Construction		1,000	500	135	425	1,400	1,300,000	470,000	0.42	1000000000	
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000			
Utility		275	125	135	425	750	1,100,000	400,000			

USE WITH TABLE 4A ADJUSTMENT FACTORS

- 3. Determine allowable stresses NDS Supplement
 - Adjustment Factors

Determine factors:								1								
CD = ? ` CM = 1 Ct = 1	Table 4.3.	1 /	Appl	icab	ility	of	Adju	ıstm	ent	Fact	tors	for	Saw	n Li	umbe	er
CL = ? CF = ?		ASD only ASD and LRFD						LRFE only								
Cfu = 1 Ci = 1 Cr = ?			Load Duration Factor	Wet Service Factor	Temperature Factor	- & Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
	$F_b' = F_b$	x	CD	Çм	¢	C_L	C _F	Cfu	Q _i	Cr	-	-	-	K _F	фь	λ
	$F_v = F_v$	x	CD	C_{M}	Ct	-	-	-	C_i	-	-	-	-	$K_{\rm F}$	$\varphi_{\mathbf{v}}$	λ

University of Michigan, TCAUP

```
Arch 544
```

Slide 21 of 99

Time Effect Factor

λ λ

Analysis Example

C_D Load duration factor

Occupancy LL (10 years) = 1.0

Table 2.3.2Frequently Used LoadDuration Factors, C_p^1

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	(1.0)	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

		Size Factors, C _F											
2 x 10			E	-	Ft	F _c							
use 1.1			Thickness										
	Grades	Width (depth)	2")& 3"	4"									
		2", 3", & 4"	1.5	1.5	1.5	1.15							
	Select	5"	1.4	1.4	1.4	1.1							
	Structural,	6"	1.3	1.3	1.3	1.1							
	No.1 & Btr,	8"	1.2	1.3	1.2	1.05							
	No.1, No.2,	(10)	1.1	1.2	1.1	1.0							
	No.3	12"	1.0	1.1	1.0	1.0							
		14" & wider	0.9	1.0	0.9	0.9							
		2", 3", & 4"	1.1	1.1	1.1	1.05							
	Stud	5" & 6"	1.0	1.0	1.0	1.0							
		8" & wider	Use No.3 Grade	tabulated design	values and size factor	rs							
	Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0							
	Utility	4"	1.0	1.0	1.0	1.0							
		2" & 3"	0.4	_	0.4	0.6							

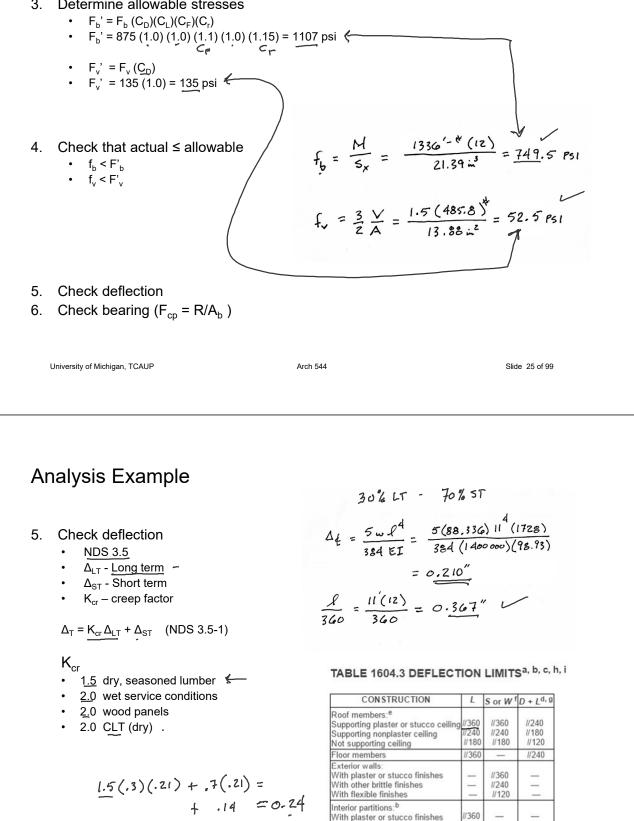
C_r Repetitive Member Factor

<u>16</u>" o.c. : $C_r = 1.15$

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_t = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than <u>24</u>" on center, are not less than <u>3 in</u> number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP


Arch 544

Slide 23 of 99

Analysis Example

	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
C _L Repetitive Member Factor	2 to 1	None	
2x10 w/ flooring: C _L = 1.0 C _L = 1.0	^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	SIND DLOOPHING
if depth/width ratio meets criteria in 4.4.1 $C_L = 1.0$	^{5 to 1} → 2x10	Hold compression edge in line (continuously)	Jeiot or Bram
Otherwise: C _L < 1.0 calculate factor using section 3.3.3	^{6 to 1} 2x12	Diagonal bridging should be used	SHEATHING/ DEORING
	^{7 to 1} 2x14	Both edges of the beam should be held in line	BANGANA MULTOD SHEATHING OF PROFING TO A BOTTOM

With other brittle finishes

With flexible finishes Farm buildings

Greenhouses

_

//180

//120

1/240

_

6. Check bearing :
$$F_{c\perp} < P/A_b$$

 $F_{c\perp}$ = 425 psi

P = R = 485.8 lbs $A_b = 1.5" (1") = 1.5 in^2$

$$f_b = \frac{485.8}{1.5} = 323.8 \text{ psi} < 425 \text{ psi} \text{ ok}$$

3.10.4 Bearing Area Factor, Cb

Reference compression design values perpendicular to grain $F_{c\perp}$ apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearings less than 6" in length and not nearer than 3" to the end of a member, the reference compression design value perpendicular to grain, $F_{c\perp}$, shall be permitted to be multiplied by the following bearing area factor, C_b :

$$C_{b} = \frac{\ell_{b} + 0.375}{\ell_{b}}$$
(3.10-2)

where:

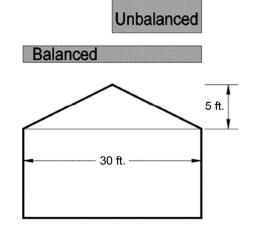
 ℓ_{b} = bearing length measured parallel to grain, in.

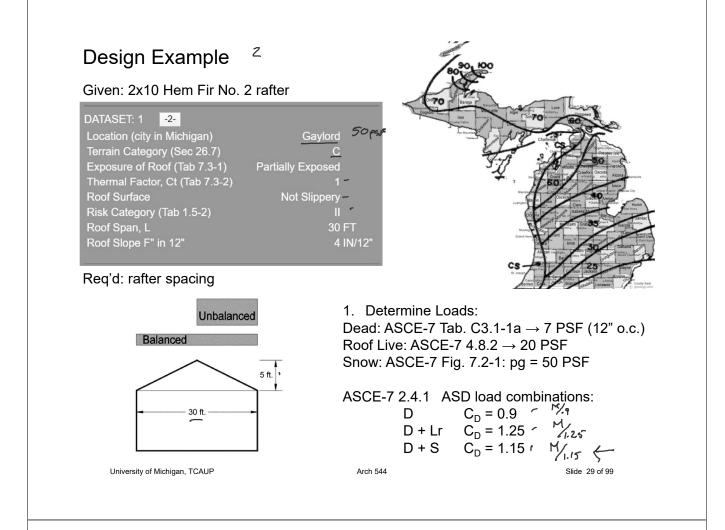
Equation 3.10-2 gives the following bearing area factors, C_b , for the indicated bearing length on such small areas as plates and washers:

Table 3.10.4			В	earing	Area	Facto	ors, Co
$\ell_{\rm b}$	0.5"	1"	1.5"	2"	3"	4"	6" or more
C _b	1.75	1.38	1.25	1.19	1.13	1.10	1.00

For round bearing areas such as washers, the bearing length, $\ell_{\rm b},$ shall be equal to the diameter.

University of Michigan, TCAUP


Arch 544


Slide 27 of 99

Design Procedure – Joist or Rafter

Given: loading criteria, wood, span, <u>size</u> Req'd: controlling load, <u>o.c. spacing</u>

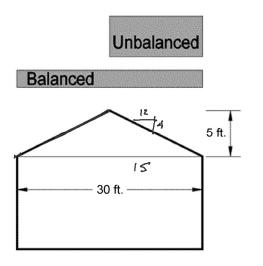
- 1. Determine each load 2
 - check applicable load cases
 - · determine loads
 - choose controlling load case
- 2. Find Max Shear & Moment
 - assume o.c. spacing = 12"
- 3. Calculate actual stresses
- 4. Calculate allowable stresses -
 - · find applicable factors
- 5. Choose spacing ~
 - determine utilization ratio: fb/Fb
 - divide o.c. spacing by the ratio
 - round down to modular spacing (12, 16 or 24)
- 6. Check shear stress
- 7. Check deflection
- 8. Check bearing

Analysis Example (rafter)

Roof Live Load

- Minimum L_r between 12 PSF and 20 PSF
- $L_r = 20 R_1 R_2$
- See 4.9.1

$$\begin{array}{c} \overbrace{1}^{t} & \text{for } A_t \leq \\ R_1 = 1.2 - 0.001A_t & \text{for } 200\\ 0.6 & \text{for } A_t \geq \end{array}$$


for
$$A_t \le 200 \text{ ft}^2(18.58 \text{ m}^2)$$

for 200 ft² < $A_t < 600 \text{ ft}^2$
for $A_t \ge 600 \text{ ft}^2(55.74 \text{ m}^2)$

where A_t = tributary area in ft² (m²) supported by any structural member and

$$R_{2} = \begin{array}{c} 1 \\ 1.2 - 0.05 \text{ F} \\ 0.6 \end{array} \qquad \begin{array}{c} \text{for F } \bigstar 4 \\ \text{for } 4 < \text{F} < 12 \\ \text{for F} \ge 12 \end{array}$$

where, for a pitched roof, F = number of inches of rise per ft.

for an arch or dome, F = rise-to-span ratio multiplied by 32.

Design Example (rafter)

 p_{g} - flat roof snow load = 50 psf p_{f} = 0.7 C_e C_t I_s p_g • Eq. 7.3-1

Low Slope Roofs

- Monoslope, hip or gable < 15°
- 4/12 = 18.4°

Minimum for Low Slope Roofs

- Minimum where $p_q \leq 20 = I_s p_q PSF$
- Minimum where $p_q > 20 = I_s 20 PSF$

7.3 FLAT ROOF SNOW LOADS, pf

The flat roof snow load, p_{f} , shall be calculated in lb/ft² (kN/m²) using the following formula:

$$p_f = 0.7C_e C_t I_s p_g$$
 (7.3-1)

7.3.1 Exposure Factor, C_e The value for C_e shall be determined from Table 7-2.

7.3.2 Thermal Factor, C_t The value for C_t shall be determined from Table 7-3.

7.3.3 Importance Factor, Is

The value for I_s shall be determined from Table 1.5-2 based on the Risk Category from Table 1.5-1.

7.3.4 Minimum Snow Load for Low-Slope Roofs, p_m A minimum roof snow load, p_m , shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. The minimum roof snow load for low-slope roofs shall be obtained using the following formula:

Where p_g is 20 lb/ft² (0.96 kN/m²) or less:

 $p_m = I_s p_g$ (Importance Factor times p_g)

Where p_g exceeds 20 lb/ft² (0.96 kN/m²):

 $p_m = 20 (I_s)$ (20 lb/ft² times Importance Factor)

This minimum roof snow load is a separate uniform load case. It need not be used in determining

University of Michigan, TCAUP

Arch 544

Slide 31 of 99

Design Example (rafter)

C_e – Exposure Factor

- Table 7-2
- Terrain Category C
- · Roof Exposure "Partially Exposed"
- Ce = 1.0

Table 7-2 Exposure Factor, Ce

	Ex	posure of Roof ^a	
Terrain Category	Fully Exposed	Partially Exposed	Sheltered
B (see Section 26.7)	0.9	1.0	1.2
C (see Section 26.7)	0.9	1.0	1.1
D (see Section 26.7)	0.8	0.9	1.0
Above the treeline in windswept mountainous areas.	0.7	0.8	N/A
In Alaska, in areas where trees do not exist within a 2-mile (3-km) radius of the site.	0.7	0.8	N/A

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.

^{*a*}Definitions: Partially Exposed: All roofs except as indicated in the following text. Fully Exposed: Roofs exposed on all sides with no shelter^{*b*} afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load (h_b) , or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.

^bObstructions within a distance of $10h_o$ provide "shelter," where h_o is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

Design Example (rafter)

C_t – Thermal Factor

- Table 7.3-2
- given = 1.0

I_{s} – Importance Factor

- Table 1.5-2
- given category II): Is = 1.0

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	<u>Snow</u> Importance Factor, I _s	Ice Importance Factor— Thickness, I _i	Ice Importance Factor—Wind, I _w	Seismic Importance Factor, I _e	
I	0.80	0.80	1.00	1.00	
П	1.00	1.00	1.00	1.00	
ш	1.10	1.15	1.00	1.25	
IV	1.20	1.25	1.00	1.50	

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

University of Michigan, TCAUP

Table 7.3-2 Thermal Factor, C_t

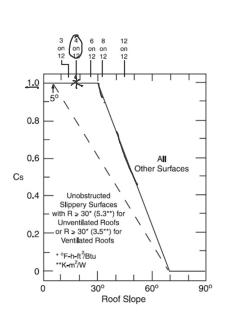
Thermal Condition ^a	C,
All structures except as indicated below	1.0
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-value) between the ventilated space and the heated space exceeds $25^{\circ}F \times h \times ft^2/Btu$ (4.4 K × m ² /W)	1.1
Unheated and open air structures	1.2
Freezer building	1.3
Continuously heated greenhouses ^b with a roof having a thermal resistance (R-value) less than $2.0^{\circ}F \times h \times ft^2/Btu$ (0.4 K × m ² /W)	0.85

^aThese conditions shall be representative of the anticipated conditions during

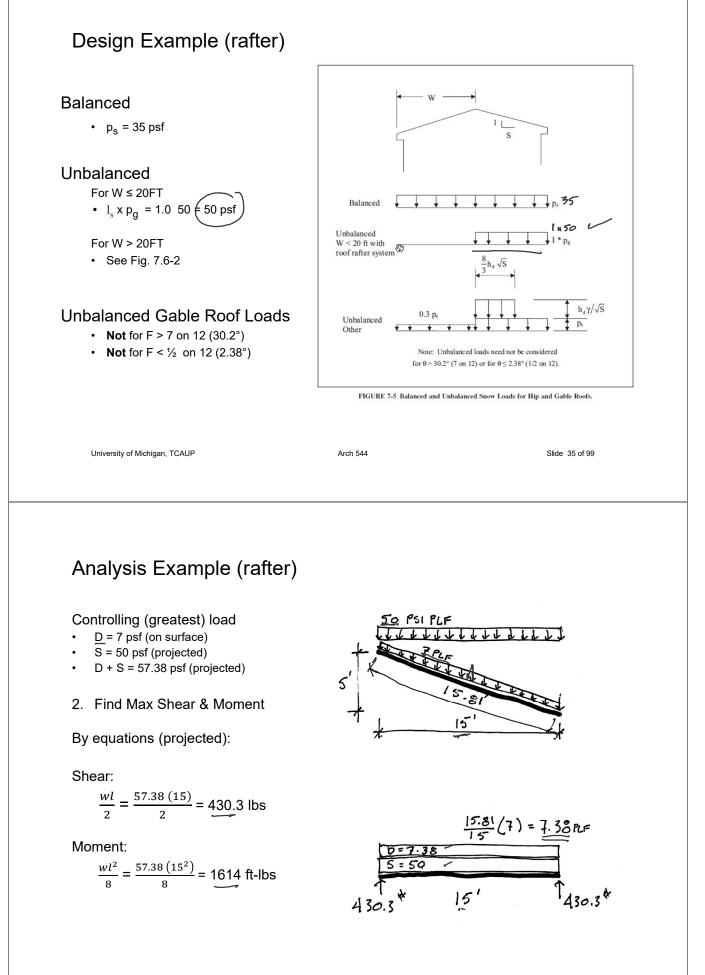
These conditions shall be representative of the anticipated conditions during winters for the life of the structure. ⁶Greenhouses with a constantly maintained interior temperature of 50°F (10°C) or more at any point 3 ft (0.9 m) above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure.

Arch 544

Slide 33 of 99


Design Example (rafter)

- p_f flat roof snow load
- $p_f = 0.7 C_e C_t I_s p_g$ 0.7 1.0 1.0 1.0 50 = <u>35 psf</u>
- p_s sloped roof snow load
- $p_s = C_s p_f$
 - Eq. 7.4-1


C_s – Roof Slope Factor

- Figure 7-2
- $C_1 = C_t$
- · Equations given in commentary C7.4
- · given roof surface "not slippery"
- Cs = 1.0 🗸

7-2a: Warm roofs with C1<1.0

3. Determine actual stresses

• f_b = M/S

• f_v = 1.5 V/A

$$f_{b} = \frac{M}{5_{x}} = \frac{1614^{1.4}(12)}{21.39m^{3}} = \frac{905.4}{905.4}$$

$$f_{v} = \frac{3}{2}\frac{v}{A} = \frac{1.5(430.3)}{13.88} = 46.5$$

University of Michigan, TCAUP

Arch 544

Slide 37 of 99

Species and Grade

- 4. Determine allowable stresses NDS Supplement
 - F_b = 850 psi
 - F_v = 150 psi

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.) Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE	WITH TAE	BLE 4A A	DJUSTMENT	FACTORS				
				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F₀	F,	F,	F _{e⊥}	F。	E	Emin	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000	I	
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WCLIB
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		WWWPA
Construction		975	600	150	405	1,550	1,300,000	470,000	1	
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

- 4. Determine allowable stresses - NDS Supplement
 - Adjustment Factors •

Determine factors:

Tabl	Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber														
		ASD only		ASD and LRFD					LRFD only						
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Billest Paston
F_b =	F _b x	CD	См	Ct	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	2
$F_v =$	F _v x	CD	См	C_t	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	2

University of Michigan, TCAUP

```
Arch 544
```

Slide 39 of 99

Analysis Example

C_D Load duration factor

Snow Load (2 months) = 1.15

Table 2.3.2 Frequently Used Load
Duration Factors, C_p^1

Load Duration	CD	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

o (o			Size Factors,	C _F		
<u>2 x 10</u>			F	b	Ft	F _c
use 1.1			Thickness	(breadth)		
	Grades	Width (depth)	2" & 3"	4"		
		2", 3", & 4"	1.5	1.5	1.5	1.15
	Select	5"	1.4	1.4	1.4	1.1
	Structural,	6"	1.3	1.3	1.3	1.1
	No.1 & Btr,	8"	1.2	1.3	1.2	1.05
	No.1, No.2,	10"	1.1	1.2	1.1	1.0
	No.3	12"	1.0	1.1	1.0	1.0
		14" & wider	0.9	1.0	0.9	0.9
		2", 3", & 4"	1.1	1.1	1.1	1.05
	Stud	5" & 6"	1.0	1.0	1.0	1.0
		8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
	Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
	Standard					
	Utility	4"	1.0	1.0	1.0	1.0
		2" & 3"	0.4	_	0.4	0.6

C_r Repetitive Member Factor

12" o.c. : C_r = 1.15

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Arch 544

Slide 41 of 99

Analysis Example

	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
C _L Repetitive Member Factor	2 to 1	None	
2x10 w/ flooring: $C_L = 1.0$ $C_L = 1.0$	^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	SIND BLOCKING
if depth/width ratio meets criteria in 4.4.1 C_L = 1.0	^{5 to 1} 2x10	Hold compression edge in line (continuously)	NALLING OHEATHING/DEDENG Jeist Dr. BEAM
Otherwise: $C_L < 1.0$ calculate factor using section 3.3.3	^{6 to 1} 2x12	Diagonal bridging should be used	SHBATHINGY DBOKING Telst BHDghig
	^{7 to 1} 2x14	Both edges of the beam should be held in line	BR-PATINA MULER SHEATHING OR DECANING TO PERMIN

- 4. Determine allowable stresses
 - $F_{b}' = F_{b} (C_{D})(C_{L})(C_{F})(C_{r})$
 - F_b' = 850 (1.15) (1.0) (1.1) (1.0) (1.15) = 1236 psi
 - $F_{v}' = F_{v}(C_{D})$
 - F_v' = 150 (1.15) = 172.5 psi
- 5. Check that actual \leq allowable
 - f_b < F'_b
 - f_v < F'_v
- 6. Utilization Ratio
 - 905.4/1236 = 0.732
 - <u>12</u>" o.c. / <u>0.73</u>2 = 16.38
 - try 2x10 at <u>16</u>" o.c.
 - f_b at 16" o.c.= <u>905</u>.4 (16/12) = <u>1207</u> psi
- 7. Check deflection
- 8. Check bearing ($F_{cp} = R/A_b$)

University of Michigan, TCAUP

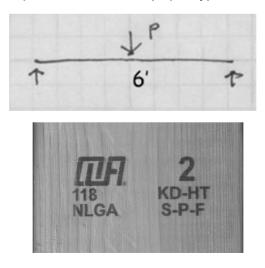
```
Arch 544
```

Slide 43 of 99

Analysis Procedure

Given: <u>member size</u>, material and span. Req'd: Max. Safe Load (**capacity**)

- 1. Assume f = F
 - Maximum actual = allowable stress
- 2. Solve stress equations for force
 - M = F_b S
 - V = 0.66 F_v A
- 3. Use maximum forces to find loads
 - Back calculate a load from forces
 - Assume moment controls
- 4. Check Shear
 - Use load found is step 3 to check shear stress.
 - If it fails (fv > F'v), then find load based on shear.
- 5. Check deflection
- 6. Check bearing

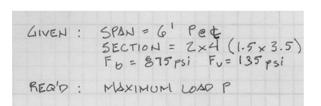

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	A	S _{xx}	I _{xx}	S _{yy}	lyy
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.						
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

 $f_{b} = \frac{M}{5_{x}} = \frac{1614^{-1}(12)}{21.39m^{3}} = \frac{905.4}{905.4}$ psi

 $f_{v} = \frac{3}{2} \frac{v}{A} = \frac{1.5(430.3)}{13.88} = 46.5 \text{Ps}$

from NDS 2012

Given: <u>member size</u>, material and span. load duration = 10 min. Req'd: Max. Safe Load (capacity)


Assume f = F'
 Maximum actual = allowable stress

Determine allowable stresses – NDS Supplement

University of Michigan, TCAUP

Analysis Example

Adjustment Factors

Table 4A Reference Design Values for Visual (Cont.) (2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see duration and dry service conditions. See NDS adjustment factors.)

		Design v					
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain			
		F₀	Ft	Fv			
SPRUCE-PINE-FIR							
Select Structural		1,250	700	135			
No. 1/ No. 2	2" & wider	875	450	135			
No. 3		500	250	135			
Stud	2" & wider	675	350	135			
Construction		1,000	500	135			
Standard	2" - 4" wide	550	275	135			
Utility		275	125	135			

Arch 544

Slide 45 of 99

Determine factors:

•

CD = ?
CM = 1
Ct = 1
CL = 1
CF = ?
Cfu = 1
Ci = 1
Cr = 1

Table 4.3.1	LA	lppl	icab	ility	of	Adju	ıstm	ent	Fact	tors	for	Saw	vn Lu	mb	ər
		ASD ASD and LRFD						LRFD only							
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	CD	См	Ct	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_v = F_v$	x	C_D	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\boldsymbol{\varphi}_v$	λ

		Size Factors,	C _F		
		F _b			
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5		
Select	5"	1.4	1.4		
Structural,	6"	1.3	1.3		
No.1 & Btr,	8"	1.2	1.3		
No.1, No.2,	10"	1.1	1.2		
No.3	12"	1.0	1.1		
	14" & wider	0.9	1.0		
	2", 3", & 4"	1.1	1.1		
Stud	5" & 6"	1.0	1.0		
	8" & wider	Use No.3 Grade	tabulated desig		
Construction,	2", 3", & 4"	1.0	1.0		
Standard					
Utility	4"	1.0	1.0		
	2" & 3"	0.4	_		

Table 2.3.2 Frequently Used LoadDuration Factors, C_p^1

Load Duration	CD	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

$$F_{b} = F_{b}' = 875(1.6)(1.5)$$

$$F_{b}' = 2100 \text{ ps}_{1}$$

$$S_{x} = 3.063 \text{ m}^{3}$$

$$M_{4} = F_{b}' S_{x} = 2100(3.063)$$

$$= 6432.3 \text{ m}^{-1}$$

$$= 536 \text{ m}^{-1}$$

University of Michigan, TCAUP

Arch 544

Slide 47 of 99

Analysis Example (cont.)

Solve stress equation for moment
 M = F'_b S_x (i.e. moment capacity)

- 3. Use maximum forces to find loads
 - Back calculate a maximum load from moment capacity

$$M_{4} = PL_{4}$$

 $P = M_{4} \frac{4}{L}$
 $P = 536 \frac{4}{6}$
 $P = 357 *$

- 4. Check shear
 - Check shear for load capacity from step 3.
 - Use P from moment to find Vmax
 Check that fv < Fv'
- 4. Check deflection (serviceability)
- 5. Check bearing (serviceability)

$$F_{v}' = F_{v}(C_{p}) = 135_{psi}(1.6) = 216_{psi}$$

$$V_{max} = \frac{P_{2}}{2} = \frac{357}{2} = 178.6^{4}$$

$$F_{v} = \frac{3}{2} \frac{V}{A} = 1.5 \frac{178.6}{525_{m}^{2}} = 51_{Psi}$$

51 < 216 : ok

Question ...

For the No.2 S-P-F 2x4 section determine the safe center point load capacity with the member <u>flatwise</u>.

$$\mathsf{F}_{\mathsf{b}}' = \mathsf{F}_{\mathsf{b}} \left(\mathsf{C}_{\mathsf{D}} \mathsf{C}_{\mathsf{M}} \mathsf{C}_{\mathsf{t}} \mathsf{C}_{\mathsf{L}} \mathsf{C}_{\mathsf{F}} \mathsf{C}_{\mathsf{fu}} \mathsf{C}_{\mathsf{i}} \mathsf{C}_{\mathsf{r}} \right)$$

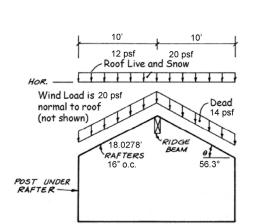
 $F_v' = F_v (C_D C_M C_t C_i)$

$$M = F'_{b} S_{v}$$
 $P = M 4 / L$

GIVEN : SPAN = 6¹ Pet SECTION = Z×4 (1.5×3.5) $F_{b} = 875 psi$ $F_{v} = 135 psi$ REQ'D : MAXIMUM LOAD P PT 6' T

Flat Use Factor, C_{fu}

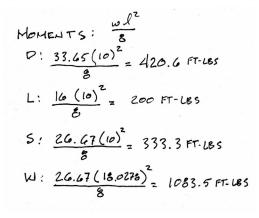
Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:


	Flat Use Factors, C _{fu}				
	Width	h Thickness	(breadth)		
	(depth	n) 2" & 3"	4"		
heck that $f_v < F'_v$	2" & 3	3" 1.0	_		
	4"	1.1	1.0		
	5"	1.1	1.05		
	6"	1.15	1.05		
	8"	1.15	1.05		
	10" & w	ider 1.2	1.1		
University of Michigan, TCAUP	Arch 544		Slide 49 of 99		

Analysis Example 3

2	Cours	Lumber -	Dofforo
J.	Sawii	Lumper -	naileis

Analyze the simple roof rafter system to determine safety in flexure. Determine the controlling load combination (see ASCE-7 2.4). Consider all load cases which include D, Lr, S and W together with the corresponding CD. Assume adequate bracing to give CL=1. Also CM, Ct, Cfu and Ci should be taken as 1.


DATASET: 1 -2-	
Wood Species	Western Cedars
Wood Grade	No.2
Rafter Size	2x10
Rafter O.C. Spacing	16 IN
Rafter Span	10 FT
Roof Slope	18 IN/FT
Dead Load (includes selfweight)	14 PSF
Roof Live Load	12 PSF
Snow Load	20 PSF
Wind Load (+ is pressure inward)	20 PSF

D:
$$14PSF \frac{16}{12} = 18.67 PLF$$

 $18.67 \frac{18.03}{10} = 33.65 PLF(PROJECTED)$
L: $12PSF \frac{16}{12} = 16 PLF(PROJECTED)$
5: $20PSF \frac{16}{12} = 26.67 PLF(PROJECTED)$
W: $20PSF \frac{16}{12} = 26.67 PLF(NORMAL)$

University of Michigan, TCAUP

D: $14 \text{ PSF} \frac{16}{12} = 16.67 \text{ PLF}$ $18.67 \frac{18.03}{10} = 33.45 \text{ PLF}(\text{PROJECTED})$ L: $12 \text{ PSF} \frac{16}{12} = 16 \text{ PLF}(\text{PROJECTED})$ S: $20 \text{ PSF} \frac{16}{12} = 26.47 \text{ PLF}(\text{PROJECTED})$ W: $20 \text{ PSF} \frac{16}{12} = 26.67 \text{ PLF}(\text{NORMAL})$

Arch 544

Slide 51 of 99

10'

Dead

14 pst

θļ

56.3

10'

18.0278' RAFTERS

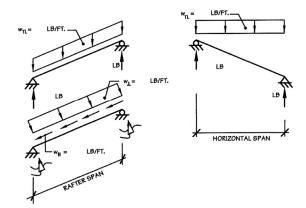
16" o.c.

HOR.

POST UNDER

Wind Load is 20 psf

normal to roof


(not shown)

12 psf ¹ 20 psf Roof Live and Snow

1111111

Analysis Example 3

Add this example but first get numbers that match drawing

To find the controlling case :

Sum moments / C_D

the largest controls

ASCE 7 2.4 ASD Load Combinations

1. D 2. D + L3. $D + (L_r \text{ or } S \text{ or } R)$ 4. $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$ 5. D + (0.6W)6. $D + 0.75L + 0.75(0.6W) + 0.75(L_r \text{ or } S \text{ or } R)$ 7. 0.6D + 0.6W

 $D: \frac{420.6}{0.9} = 467.4$ P+Lr: 420.6+200 = 496.5 1.0 0+5: <u>420.6+333.3</u> = 655.6 1.15 D+.GW: 420.6+.6(103.5) = 669.2 1.6 0+.75(.6 w)+.75 Lr: 420.6+.75(.6(1083.5))+.75(200) = 661.3 1.6 D+-75 (.6 W)+.755 : 420.6+.75(.6(1083.5)+.75(333.3) = 723.8 1.6 LARGEST CONTROLS : LOAD CASE 15 D+.75(.6W)+.755 ME = 1158 FT-LBS

University of Michigan, TCAUP

Arch 544

LOAD CASES :

Slide 53 of 99

Analysis Example 3

Other stress adjustment factors:

 $C_F C_r$

for 16" o.c. C_r = 1.15

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

	Size Factors, C _F						
			F	, ,	Ft	Fc	
C Cine feater			Thickness	(breadth)			
C _F Size factor	Grades	Width (depth)	2" & 3"	4"			
2 x 10		2", 3", & 4"	1.5	1.5	1.5	1.15	
2 X 10	Select	5"	1.4	1.4	1.4	1.1	
use 1.1	Structural,	6"	1.3	1.3	1.3	1.1	
400 111	No.1 & Btr,	8"	1.2	1.3	1.2	1.05	
	No.1, No.2,	10"	1.1	1.2	1.1	1.0	
	No.3	12"	1.0	1.1	1.0	1.0	
		14" & wider	0.9	1.0	0.9	0.9	
		2", 3", & 4"	1.1	1.1	1.1	1.05	
	Stud	5" & 6"	1.0	1.0	1.0	1.0	
		8" & wider	Use No.3 Grade	tabulated design	values and size facto	rs	
	Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0	
	Standard						
	Utility	4"	1.0	1.0	1.0	1.0	
		2" & 3"	0.4	—	0.4	0.6	

Tabulated allowable stress:

F_b = 700 psi

				Design va	lues in pounds p	er square inch (p	osi)		
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus of	fElasticity	Specific Gravity ⁴
		Fb	Ft	F,	Fc⊥	Fc	E	Emin	G
WESTERN CEDARS									
Select Structural		1,000	600	155	425	1,000	1,100,000	400,000	
No. 1	2" & wider	725	425	155	425	825	1,000,000	370,000	
No. 2	2" & wider	700	425	155	425	650	1,000,000	370,000	
No. 3		400	250	155	425	375	900,000	330,000	0.00
Stud	2" & wider	550	325	155	425	400	900,000	330,000	0.36
Construction	Contraction which have been able	800	475	155	425	850	900,000	330,000	
Standard	2" - 4" wide	450	275	155	425	650	800,000	290,000	
Utility		225	125	155	425	425	800.000	290.000	

University of Michigan, TCAUP

Arch 544

Slide 55 of 99

Analysis Example 3

allowable stress:

F_b = 700 psi

 $F'_{b} = F_{b} (C_{D} C_{M} C_{t} C_{L} C_{F} C_{fu} C_{i} C_{r})$ $F'_{b} = 700 \text{ psi } (1.6 \ 1.1 \ 1.15) = 1416.8 \text{ psi}$

		ASD only				AS	SD an	d LRI	FD					LRFI only	
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	CD	См	Ct	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_v = F_v$	x	CD	См	C_t	-	-	-	C_i	-	-	-	-	K _F	$\boldsymbol{\varphi}_v$	λ

actual stress:

$$\begin{split} f_{b} &= M \ / \ S_{x} \\ f_{b} &= 1158.15 \ \text{ft.-lbs.} \ (12) \ / \ 21.39 \ \text{in}^{3} \\ f_{b} &= 649.7 \ \text{psi} \end{split}$$

F'_b = 1416.8 psi > 649 psi ... OK

try 24" o.c. ?

check shear

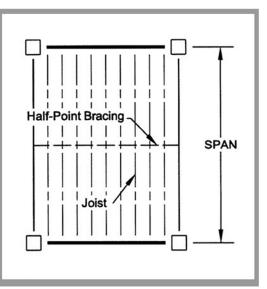
University of Michigan, TCAUP

Arch 544

Slide 57 of 99

Analysis Example

Given: loading, member size, material and span.


Req'd: LL capacity in psf

4. Sawn Lumber - Joists

Analyze the given floor system for live + dead load. Determine the maximum capacity for the floor based on the flexural strength of the joists. Check the joists for shear strength. Assume that the flooring does not supply bracing (i.e. braced at C.L. and ends as shown). Assume M.C. < 19%

DATASET: 1 -2-

Wood Species	Douglas Fir-South
Wood Grade	No.2
Wood Size	2x10
Joist o.c. spacing	24 IN
Joist Span	10 FT
Floor D load including joists	13 PSF

Find Fb, Fv and Emin for Douglas Fir – South No2.

• (from NDS Supplement)

		ence Des " thick) ^{1,2}		lues fo	r Visua	lly Graded	Dimensio	on Lum	ber			
	(All sp duratio	ecies exce	ept Sou			e Table 4B) S 4.3 for a c						d
		nent lactor		WITH TAI	BLE 4A A	DJUSTMENT	FACTORS					
					Design va	lues in pounds p	er square inch (p	osi)				
Species and commercial Size grade classification			Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain		of Elasticity	Specif Gravit		es
			Fь	Ft	F,	F₀⊥	F。	E	Emin	G		
DOUGLAS FIR-SOUT Select Structural	ТН		1,350	900	180	520	1,600	1,400,000	510,000			
No. 1		0" 0	925	600	180	520	1,450	1,300,000	470,000			
No. 2		2" & wider	850	525	180	520	1,350	1,200,000				
No. 3 Stud		0.0.0.1	500	300 425	180	520	775	1,100,000			WW	PA
Construction		2" & wider	675 975	425 600	180 180	520 520	850 1,650	1,100,000				
Standard		2" - 4" wide	550	350	180	520	1,400	1,100,000				
Utility			250	150	180	520	900	1,000,000	370,000			
	an, TCAU	F				544				Slide 5	0 01 00	
	an, TCAU											
alvsis F									X-X /			(AXIS
nalysis E						Nominal	Standard Dressed	Area		AXIS Moment		Y AXIS Momen of
	Exai	mple						of	Section N	AXIS Noment of	Y-1	Momen
	Exai	mple				Nominal	Dressed Size (S4S) b x d	of Section A	Section Modulus S _{xx}	AXIS Moment of Inertia I	Y-1 Section Modulus S _{yy}	Momen of Inertia I _{yy}
nalysis E	Exai	mple				Nominal Size b x d	Dressed Size (S4S)	of Section	Section Modulus	AXIS Moment of Inertia I	Y-1 Section Modulus	Momen of Inertia
	Exai	mple				Nominal Size	Dressed Size (S4S) b x d	of Section A in. ²	Section Modulus S _{xx}	AXIS Moment of Inertia I I _{xx} in. ⁴	Y-1 Section Modulus S _{yy} in. ³	Momen of Inertia I _{yy} in. ⁴
ction Prope	Exai	mple s:				Nominal Size b x d Boards ¹	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2	of Section A	Section Modulus S _{xx} in. ³	AXIS Moment of Inertia I I _{xx} in. ⁴ 0.977 2.680	Y-1 Section Modulus S _{yy} in. ³ 0.234 0.328	Momen of Inertia I _{yy}
	Exai	mple s:				Nominal Size b x d Boards ¹ 1 x 3 1 x 4 1 x 6	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2 3/4 x 5-1/2	of Section A in. ² 1.875 2.625 4.125	Section Modulus S _{xx} in. ³ 0.781 1.531 3.781	AXIS Moment of Inertia I I _{xx} in. ⁴ 0.977 2.680 10.40	Y-1 Section Modulus S _{yy} in. ³ 0.234 0.328 0.328 0.516	Momen of Inertia I _{yy} in. ⁴ 0.088 0.123 0.193
ction Prope	Exai	mple s:				Nominal Size b x d Boards ¹ 1 x 3 1 x 4 1 x 6 1 x 8	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2 3/4 x 5-1/2 3/4 x 7-1/4	of Section A in. ² 1.875 2.625 4.125 5.438	Section Modulus S _{xx} in. ³ 0.781 1.531 3.781 6.570	AXIS Aoment of Inertia I I _{xx} in. ⁴ 0.977 2.680 10.40 23.82	Y-1 Section Modulus S _{yy} in. ³ 0.234 0.234 0.516 0.680	Momen of Inertia I _{yy} in. ⁴ 0.088 0.123 0.193 0.255
ction Prope 10 (3.5" x	Exai erties	mple s:				Nominal Size b x d Boards ¹ 1 x 3 1 x 4 1 x 6 1 x 8 1 x 10	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2 3/4 x 5-1/2 3/4 x 7-1/4 3/4 x 9-1/4	of Section A in. ² 1.875 2.625 4.125 5.438 6.938	Section Modulus S _{xx} in. ³ 0.781 1.531 3.781 6.570 10.70	AXIS forment of Inertia I.s. in. ⁴ 0.977 2.680 10.40 23.82 49.47	Y-1 Section Modulus S _{yy} in. ³ 0.234 0.328 0.516 0.680 0.867	Momen of Inertia I _{yy} in. ⁴ 0.088 0.123 0.123 0.193 0.255 0.325
ction Prope	Exai erties	mple s:				Nominal Size b x d 1 x 3 1 x 4 1 x 6 1 x 8 1 x 10 1 x 12	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2 3/4 x 5-1/2 3/4 x 7-1/4	of Section A in. ² 1.875 2.625 4.125 5.438 6.938 8.438	Section Modulus S _{xx} in. ³ 0.781 1.531 3.781 6.570 10.70 15.82	AXIS Moment of Inertia I J _{xx} in. ⁴ 0.977 2.680 10.40 23.82 49.47 88.99	Y-1 Section Modulus S _{yy} in. ³ 0.234 0.328 0.516 0.680 0.867 1.055	Momen of Inertia I _{yy} in. ⁴ 0.088 0.123 0.193 0.255 0.325 0.396
ction Prope 10 (3.5" x	Exai erties	mple s:				Nominal Size b x d Boards ¹ 1 x 3 1 x 4 1 x 6 1 x 8 1 x 10 1 x 12 Dimensior 2 x 3	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2 3/4 x 5-1/2 3/4 x 5-1/2 3/4 x 7-1/4 3/4 x 9-1/4 3/4 x 11-1/4 b Lumber (see N 1-1/2 x 2-1/2	of Section A in. ² 1.875 2.625 4.125 5.438 6.938 8.438 8.438 IDS 4.1.3.2 3.750	Section Modulus S _{xx} in. ³ 0.781 1.531 3.781 6.570 10.70 15.82) and Deck 1.56	AXIS forment of Inertia I.x in. ⁴ 0.977 2.680 10.40 23.82 49.47 88.99 ing (see March 1.953)	Y Section Modulus S _{yy} in. ³ 0.234 0.328 0.516 0.680 0.867 1.055 iDS 4.1.3 0.938	Momen of Inertia lyy in.4 0.088 0.123 0.123 0.123 0.255 0.325 0.325 0.325 0.396 3.5) 0.703
ction Prope 10 (3.5" x	Exai erties	mple s:				Nominal Size b x d Boards ¹ 1 x 3 1 x 4 1 x 6 1 x 8 1 x 10 1 x 12 Dimensior 2 x 3 2 x 4	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 5-1/2 3/4 x 5-1/2 3/4 x 7-1/4 3/4 x 7-1/4 3/4 x 11-1/4 1-1/2 x 2-1/2 1-1/2 x 3-1/2	of Section A in. ² 1.875 2.625 4.125 5.438 6.938 6.938 8.438 IDS 4.1.3.2 3.750 5.250	Section Modulus S _{xx} in.3 0.781 1.531 3.781 6.570 10.70 15.82 c) and Deck 1.56 3.06	AXIS Moment of Inertia I Ix in.4 0.977 2.680 10.40 23.82 10.40 23.82 10.40 23.82 10.40 23.83 10.40 10.55	Y-1 Section Modulus S _{yy} in. ³ 0.234 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.351 0.355 1.055 1.313	Momen of Inertia I _{yy} in. ⁴ 0.088 0.123 0.193 0.255 0.325 0.325 0.326 0.396 3.5) 0.703 0.984
ction Prope 10 (3.5" x	Exai erties 11.2 in ²	mple s:				Nominal Size b x d Boards ¹ 1 x 3 1 x 4 1 x 6 1 x 8 1 x 10 1 x 12 Dimensior 2 x 3	Dressed Size (S4S) b x d in. x in. 3/4 x 2-1/2 3/4 x 3-1/2 3/4 x 5-1/2 3/4 x 5-1/2 3/4 x 7-1/4 3/4 x 9-1/4 3/4 x 11-1/4 b Lumber (see N 1-1/2 x 2-1/2	of Section A in. ² 1.875 2.625 4.125 5.438 6.938 8.438 8.438 IDS 4.1.3.2 3.750	Section Modulus S _{xx} in. ³ 0.781 1.531 3.781 6.570 10.70 15.82) and Deck 1.56	AXIS forment of Inertia I.x in. ⁴ 0.977 2.680 10.40 23.82 49.47 88.99 ing (see March 1.953)	Y Section Modulus S _{yy} in. ³ 0.234 0.328 0.516 0.680 0.867 1.055 iDS 4.1.3 0.938	Momen of Inertia lyy in.4 0.088 0.123 0.123 0.123 0.255 0.325 0.325 0.325 0.396 3.5) 0.703

	AS on	SD 1ly				AS	SD an	d LRI	FD				;	LRFI only	>
	T and Drunnian Elector	Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$\mathbf{b}' = \mathbf{F}_{\mathbf{b}}$	x C	C _D	См	Ct	C_L	$C_{\rm F}$	C_{fu}	C_i	Cr				K _F	фь	λ
$v' = F_v$	x C	C _D (См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\varphi_{\mathbf{v}}$	λ

2 x 5 1-1/2 x 4-1/2 2 x 6 1-1/2 x 5-1/2 2 x 8 1-1/2 x 7-1/4 2 x 10 1-1/2 x 9-1/4 1.688 2.063 2.719 3.469 4.219 4.969 3.646 11.39 20.80 47.63 98.93 1.266 1.547 6.750 5.06 7.56 13.14 21.39 31.64 43.89 5.10 8.44 12.60 21.90 8.250 2.039 2.602 3.164 3.727 4.557 10.88 13.88 16.88 178.0 290.8 8.932
 19.88

 8.75

 11.25

 13.75

 18.13

 23.13

 28.13

 33.13

 38.13

 12.25

 15.75

 19.25

 25.38

 39.38

 46.38

 53.38
 18.98 34.66 79.39 4.688 5.729 7.552 5.859 7.161 9.440 164.9 296.6 484.6 9.635 11.72 13.80 35.65 12.04 52.73 73.15 14.65 17.25 96.90 7.15 738.9 15.89 19.86 12.51 7.146 9.188 11.23 14.80 18.89 22.97 27.05 31.14 11.81 17.65 30.66 26.58 48.53 111.1 16.08 19.65 25.90 230.8 415.3 678.5 1034 49.91 33.05 73.83 102.41 135.66 40.20 47.34 54.49

University of Michigan, TCAUP

Design Example

2x10 Doug Fir S No2 M.C.<19%

Determine Adjustment Factors

C _r = 1.15
C _F = 1.1
C _M = 1.0

Table 4A Adjustment Factors

Repetitive Member Factor, C, Bending design values, $F_{\rm in}$, for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, C, = 1.15, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load support the design load.

Arch 544

Wet Service Factor, C_M When dimension humber is used where moisture con-tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

 $\label{eq:Flat} \begin{array}{l} Flat Use Factor, C_{fa} \\ Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide the value) of the statement of$ face), the bending design value, F_b , shall also be multiplied by the following flat use factors:

Width	Thickness (breadth)					
(depth)	2" & 3"	4"				
2" & 3"	1.0	_				
4"	1.1	1.0				
5"	1.1	1.05				
6"	1.15	1.05				
8"	1.15	1.05				
10" & wider	12	11				

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Util-ity grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Stelect Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Slide 61 of 99

Size Factor, C_r Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

		F		Ft	Fc
		Thickness (I	oreadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade ta	abulated design v	alues and size facto	rs
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP

 C_{I} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, CL is calculated using equation 3.3-6 The maximum allowable slenderness, R_B is 50

Cantilever ¹	when $\ell_u/d < 7$	e de tracta de la composición de la com	when $\ell_u/d \ge 7$	d = 9.25"
Uniformly distributed load	ℓ_{e} =1.33 ℓ_{u}	B.J.	$\ell_e=0.90 \ \ell_u + 3d$	$\ell_{\rm u}$ / d = 6.48
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d	
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$	$l_{e} = 2.06 l_{u} =$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$. Sport	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d	$r_{e} = 2.00 r_{u} =$
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d	
Concentrated load at center with lateral support at center		ℓ_{e} =1.11 ℓ_{u}	200 and 1	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_e=1.68 \ \ell_u$	*	
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	× *	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points	(5)	$\ell_e=1.68 \ \ell_u$		
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		ℓ_{e} =1.73 ℓ_{u}		
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		ℓ_{e} =1.78 ℓ_{u}		
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		ℓ_{e} =1.84 ℓ_{u}		
Equal end moments		ℓ_{e} =1.84 ℓ_{u}		

$$\begin{split} \ell_{\epsilon} &= 2.06 \ \ell_{u} & \text{when } \ell_{c}/d < 7 \\ \ell_{e} &= 1.63 \ \ell_{e} + 3d & \text{when } 7 \le \ell_{c}/d \le 14.3 \\ \ell_{e} &= 1.84 \ \ell_{u} & \text{when } \ell_{c}/d > 14.3 \\ 2. & \text{Multiple span applications shall be based on table values or engineering analysis.} \end{split}$$

University of Michigan, TCAUP

C_L Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_{L} is calculated using equation 3.3-6 The maximum allowable slenderness, R_{B} is 50

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$\mathsf{R}_{\mathsf{B}} = \sqrt{\frac{\ell_{\mathsf{e}}\mathsf{d}}{\mathsf{b}^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, $R_{\rm B},$ shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

where:

$$\begin{split} F_b{}^* &= \text{reference bending design value multiplied by} \\ & \text{all applicable adjustment factors except } C_{fu}, \\ & C_V \text{ (when } C_V \leq 1.0), \text{ and } C_L \text{ (see 2.3), psi} \end{split}$$

$$F_{bE} = \frac{1.20 E_{min}}{R_{B}^{2}}$$

University of Michigan, TCAUP

Arch 544

le = 123,6

 $R_{B} = \sqrt{\frac{led}{b^{2}}} = \sqrt{\frac{123.4(9.25)}{15^{2}}}$

Fb = 850(1.1 1,15) = 1075.25 psi

 $F_{bE} = \frac{1.20 \ E_{min}}{R_{e}^{2}} = \frac{1.20 \ (440 \ 000)}{22.54^{2}}$

 $\frac{1}{5} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{5} \frac{1}$

 $C_{L} = \frac{1+0.9664}{1.9} - \left[\frac{1+0.9664}{1.9}\right]^{2} - \frac{0.9664}{0.95}$

 $C_{L} = 1.0349 - \sqrt{1.0349^{2} - 1.0172}$

 $C_{L} = 1.0349 - 0.23198 = 0.8029$

RB = 1508.1 = 22.54

FLE = 1039.1 PSI

Slide 63 of 99

Analysis Example

Determine the Factored Allowable Stress

F'b = Fb	(adjustment factors))
----------	----------------------	---

 $C_{D} = 1.0$ $C_{r} = 1.15$ $C_{F} = 1.1$ $C_{M} = 1.0$ $C_{I} = 0.8029$

		ASD only	ASD and LRFD								LRFI only)			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b = F_b$	x	CD	См	Ct	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_v' = F_v$	x	CD	См	Ct	-	-	-	C_i	-	-	-	-	$K_{\rm F}$	$\phi_{\rm v}$	λ

F'b = 850(1.15 x 1.1 x 0.8029) = 863.3 psi

 $F'v = 180(C_D C_M C_t C_i) = 180 \text{ psi}$

Allowable Stresses F'b = 863.3 psi

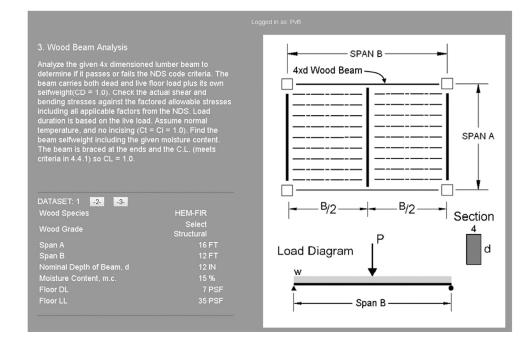
F'v = 180 psi

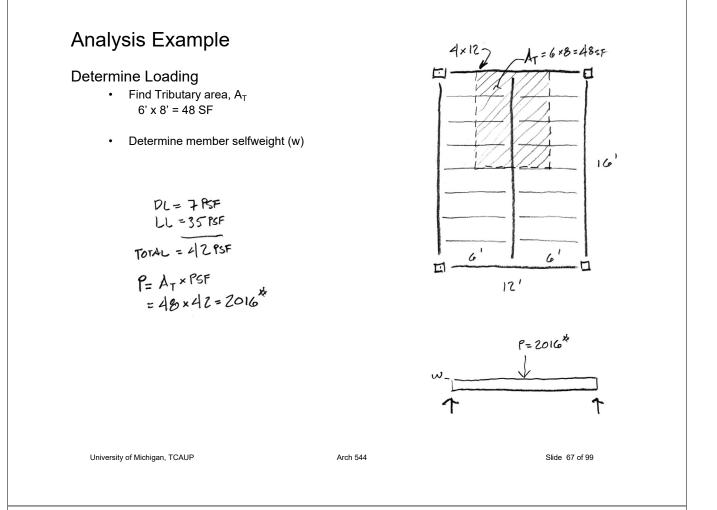
			~		N N	
	Standard	Area	X-/	(AXIS Moment	1-1	AXIS Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	b x d	A				
bxu		in. ²	S _{xx} in. ³	I _{xx} in. ⁴	S _{yy}	l _{yy}
	in. x in.	In."	In.*	in.	in. ³	in.⁴
Boards ¹	011 0 110	1.075	0.001			
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
	n Lumber (see N					
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	10.00	31.04	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

M = F'b Sx $w_{DL} = 13 p_{SF} \frac{z4}{12} = 26 PLF$ $w_{UL} = ?$ 10' $M = F'_{L} 5_{X} = 363.3 (21.39) = 18466 \text{ m-1b}$ = 1538.8 FT-15 $M = \frac{w}{8} l^{2} = 1538.8 = \frac{w(10)^{2}}{8}$ $w_{Total} = 123.11 \text{ PLF}$ $w_{LL} = 123.11 - 26 = 97.11 \text{ PLF}$ $w_{LL} = 97.11 \frac{12}{24} = 42.55 \text{ PSF}$ $\Delta c_{TOJL} V_{max}$ $V = \frac{w}{2} = \frac{(26+97.11)}{2} lo' = 615.5 LB$ $f_{V} = \frac{3}{2} \frac{V}{A} = 1.5 \frac{615.5}{13.58} = 666.5 \text{ PSI} < 180$

Determine LL capacity

University of Michigan, TCAUP


Arch 544


Slide 65 of 99

Analysis Example

Given: loading, member size, material and span.

Req'd: Safe or Unsafe

Section Properties:

4 x 12 (3.5" x 11.25")

Area = 39.38 in²

Sx = 73.83 in³

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	A	S _{xx}	I _{xx}	Syy	lyy
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	8.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Selfweight of member:

The following formula shall be used to determine the density in lbs/ft³ of wood:

density =
$$62.4 \left[\frac{G}{1 + G(0.009)(m.c.)} \right] \left[1 + \frac{m.c.}{100} \right]$$

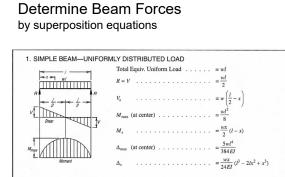
G = specific gravity of wood m.c. = moisture content of wood, %

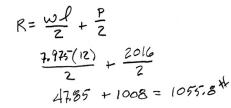
where:

D

Arch 544

w (PLF) = D (PCF) x Area (IN²)/144


Density at 0 M.C. = 62.4 x G (dry) 62.4 x 0.43 = 26.8 PCF


$$= 62.4 \left[\frac{0.43}{1+0.43(0.009)(15)} \right] \left[1 + \frac{15}{100} \right]$$

$$25.35 \times 1.15 = 29.16 \text{ PCF}$$

$$W = PLF = D \frac{AREA}{144} = 29.16 \frac{39.38}{144}$$

University of Michigan, TCAUP

7. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER
Total Equiv. Uniform Load
$$\dots \dots = 2P$$

 $R = V \dots = \frac{P}{2}$
 M_{max} (at point of load) $\dots = \frac{PI}{4}$
 M_{max} (at point of load) $\dots = \frac{PI}{4}$
 M_{max} (at point of load) $\dots = \frac{PX}{48EI}$
 Δ_x (when $x < \frac{1}{2}$) $\dots = \frac{PX}{48EI}$

$$M_{4} = \frac{w - l^{2}}{8} + \frac{PL}{4}$$

$$\frac{7.975(12)^{2}}{8} + \frac{2016(12)}{4}$$

$$143.5 + 6048 = 6191.5^{-1}$$

Analysis Example

University of Michigan, TCAUP

Slide 69 of 99

Determine actual stresses

- f_b = M/S
- f_v = 1.5 V/A

			X-X AXIS		Y-Y AXIS								
	Standard	Area		Moment		Moment							
Nominal	Dressed	of	Section	of	Section	of							
Size	Size (S4S)	Section	Modulus		Modulus	Inertia							
bxd	b x d	A	S _{xx}	I _{xx}	S _{yy}	l _{yy}							
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4	ACTUAL STRESS :						
Boards ¹							$f_{b} = \frac{M}{S_{x}} = \frac{G191.5(12)}{73.63} = 1006.3$						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	(12)						
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	t = 17/ - 61 1113 - = 100/6/3						
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193							
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	17 73.65						
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	15 0 0						
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396							
	Immension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)												
2 x 3 2 x 4	1-1/2 x 2-1/2 1-1/2 x 3-1/2	3.750 5.250	1.56 3.06	1.953 5.359	0.938	0.703 0.984	$f_V = \frac{3}{2} \frac{V}{A} = 1.5 \frac{1055.8}{39.38} = 40.221$						
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	V CA 59.30						
2 x 6 2 x 8	1-1/2 x 5-1/2 1-1/2 x 7-1/4	8.250 10.88	7.56	20.80 47.63	2.063 2.719	1.547 2.039							
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602							
2 x 10	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164							
2 x 12	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727							
3x4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557							
3x5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859							
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161							
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440							
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04							
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65							
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25							
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86							
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51							
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08							
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65							
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90							
4 x 10	3-1/2 x 9-1/4	32 38	49.91	230.8	18.89	33.05							
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20							
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34							
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49							
Univ	ersity of Michie	gan, TCA	UP				Arch 544 Slide 71 of 99						
	,												

Analysis Example

Determine allowable stresses

- F_{b} and F_{v} (from NDS)
 - DESIGN VALUES FOR WOOD CONSTRUCTION NDS SUPPLEMENT

35

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) $(2" - 4" \text{ thick})^{1,2,3}$

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS												
		Design values in pounds per square inch (psi)										
Species and commercial	Size classification		Tension parallel	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus of Elasticity		Specific Gravity ⁴	Grading Rules Agency		
grade	classification	Bending	to grain									
		Fь	F,	F,	F₀⊥	F。	E	Emin	G			
HEM-FIR			_									
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000				
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000				
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000				
No. 2		850	525	150	405	1,300	1,300,000	470,000		WCLIB		
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA		
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVVPA		
Construction		975	600	150	405	1,550	1,300,000	470,000				
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000				
Utility		250	150	150	405	850	1,100,000	400,000				

Analysis Example

3. Determine allowable stresses

- F_b = 1400 psi
 F_v = 150 psi

Determine factors:	Table 4.3	3.1 /	Appl	icab	ility	of	Adju	stm	ent	Fact	ors	for	Saw	/n Lu	Imbe)r
CD = 1.0 (LL) CM = 1.0 (15%)			ASD only				AS	SD an	d LR	FD					LRFD only)
Ct = 1.0 (13%) $Ct = 1.0 (4.4.1)$ $CF =$ $Cfu = 1.0$ $Ci = 1.0$ $Cr = 1.0$			Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
	$F_b = F_b$	x	CD	См	C_t	C_L	$C_{\rm F}$	C_{fu}	C_i	C_r	-	-	-	K _F	фь	λ
	$\mathbf{F_v} = \mathbf{F_v}$	x	CD	См	Ct	-	-	-	C_i	-	-	•	-	$K_{\rm F}$	$\varphi_{\rm v}$	λ

University of Michigan, TCAUP

Arch 544

Slide 73 of 99

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $F_{b}' = F_{b} (C_{D} C_{M} C_{t} C_{L} C_{F} C_{fu} C_{i} C_{r})$

b/d = 3.5 / 11.25 = 3.11 (case b)

Assuming ends are braced, CL = 1.0

3.3.3 Beam Stability Factor, C.

3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with $4.4.1, C_L = 1.0.$

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

4.4.1 Stability of Bending **Members**

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) $2 < d/b \le 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) $4 < d/b \le 5$; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x12 (d) $5 < d/b \le 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) $6 < d/b \le 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

Analysis Example

Determine allowable stresses 4 x 12

			X-)	AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	A	S _{xx}	I _{xx}	Syy	I _{vv}
	in. x in.	in.2	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service	Factors,	CM	
F _b	Ft	F _v	$F_{c\perp}$	F _c	E and E_{\min}
0.85*	1.0	0.97	0.67	0.8**	0.9

* when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$ ** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

		Size Factors, C	F		
2		F _b			
		Thickness (I	breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5		
Select	5"	1.4	1.4		
Structural,	6"	1.3	1.3		
No.1 & Btr,	8"	1.2	1.3		
No.1, No.2,	10"	1.1	1.2		
No.3	12"	1.0	1.1		
	14" & wider	0.9	1.0		
	2", 3", & 4"	1.1	1.1		
Stud	5" & 6"	1.0	1.0		
	8" & wider	Use No.3 Grade ta	abulated desig		
Construction, Standard	2", 3", & 4"	1.0	1.0		
Utility	4"	1.0	1.0		
•	2" & 3"	0.4			

_

Arch 544

Slide 75 of 99

Analysis Example

University of Michigan, TCAUP

3. Determine allowable stresses

• F_b' = F_b (usage factors)

$$\frac{F_{6}}{C_{F}} = \frac{10}{C_{F}} \left(\frac{102}{1000} \right)$$

$$\frac{F_{6}}{C_{F}} = \frac{10}{100} \left(\frac{102}{1000} \right)$$

$$\frac{C_{F}}{C_{F}} = \frac{10}{1000} \text{ BRACED REP MPS 4.4.1}$$

$$\frac{C_{F}}{C_{F}} = \frac{100}{1000} \text{ FOR 4xIR (NDS SUP P32)}$$

$$\frac{C_{F}}{C_{F}} = \frac{100}{1000} \left(\frac{1000}{1000} \right) \left(\frac{10000}{1000} \frac{1000}{1000} \right)$$

$$\frac{C_{F}}{C_{F}} = \frac{100}{1000} \left(\frac{1000}{1000} \right) \left(\frac{10000}{1000} \frac{10000}{1000} \right)$$

$$F'_{h} = 1400(1.1) = 1540 PS1$$

Analysis Example

- 3. Determine allowable stresses
 - $F_v' = F_v$ (usage factors)

 $E_{D} = C_{D} = 1.0$ CH, = 110 $C_{t} = 110$ ci = 110 F' = 150 (1.0) = 150 PSI

University of Michigan, TCAUP

Arch 544

Slide 77 of 99

Analysis Example

Check that actual \leq allowable

• $f_b \leq F'_b$ • $f_v \leq F'_v$

fb < F'b 1006.3 PSI <1540 :. Vor

fu< F'v 40,22 PSi <150 ... VOR

Check deflection Check bearing ($F_{C\perp}$ = Reaction/A_{bearing})

Design Procedure

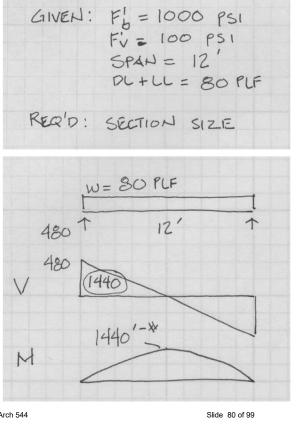
Given: load, wood, span Req'd: member size

- 1. Find Max Shear & Moment
 - · Simple case equations
 - · Complex case diagrams
- 2. Estimate allowable stresses
- 3. Solve S=M/F_b'
- 4. Choose a section from Table 1B • Revise DL and F_b'
- 5. Check shear stress
 - First for V max (easier)
 - If that fails try V at d distance from support.
 - · If the section still fails, choose a new section with A=1.5V/F,'
- 6. Check deflection
- 7. Check bearing

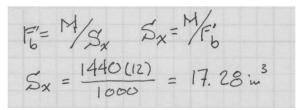
University of Michigan, TCAUP	

			X-)	(AXIS	Y-۱	AXIS
Nominal Size	Standard Dressed	Area of Section	Section	Moment of Inertia	Section	Moment of
	Size (S4S)		Modulus		Modulus	Inertia
b x d	bxd	A	S _{xx}	I _{xx}	S _{yy}	I _{yy}
	in. x in.	in. ²	in. ³	in.⁴	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N				NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Arch 544


Slide 79 of 99

Design Example (joist)


Given: total load, wood, span Req'd: member size

1. Find Max Shear & Moment • Simple case - equations

· Complex case - diagrams

- Estimate allowable stresses (given in this example) F'_b = 1000 psi F'_v = 100 psi
- 3. Solve $S=M/F_b$ '

4. Choose a section from S table
Revise DL and F_b'

2×10	5x=21.39717.28	
	$A = 13.88 \mu^{2}$	

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	A	S _{xx}	I _{xx}	Syy	l _{yy}
	in. x in.	in.2	in. ³	in. ⁴	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N	IDS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Design Example

Arch 544

Slide 81 of 99

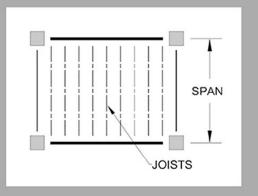
- 5. Check shear stress
 - First for V max (easier)
 - If that fails try V at d distance (remove load d from support)
 - If the section still fails, choose a new section with A=1.5V/F_v'

 $f_V = \frac{3}{2} \frac{V}{A} = \frac{1.5(480^*)}{13.881^2} = 51.87$

 2×10 $5_{\chi} = 21.39 > 17.28$ $A = 13.88 \mu^{2}$

51.87 psi < 100 psi V.OK

- 6. Check deflection
- 7. Check bearing


Design Example (joist)

Given: load, wood, span Req'd: <u>member size</u>

4. Wood Beam Design

Design a 2x dimensioned lumber floor joist to carry the given dead + live floor load. Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct, Cfu, and Ci = 1.0. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

DATASET: 1 -23-	
Wood Species	HEM-FIR
Wood Grade	No.1
Span	20 FT
Joist Spacing, o.c.	12 IN
Moisture Content, m.c.	15 %
Floor DL	7 PSF
Floor LL	35 PSF

University of Michigan, TCAUP

Arch 544

Slide 83 of 99

Design Example

Determine allowable stresses

• F_{b} and F_{v} (from NDS)

Table 4AReference Design Values for Visually Graded Dimension Lumber
(2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE		DLE 4A A	DJUSTMENT	FACTORS				
				Design va	alues in pounds p	er square inch (p	osi)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	Ft	F,	F₀⊥	Fc	E	Emin	G	
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1.100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WOUD
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WCLIB
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		WWPA
Construction		975	600	150	405	1,550	1,300,000	470,000	1	
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

USE WITH TABLE 4A ADJUSTMENT FACTORS

Determine allowable stresses

			X-)	AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	Α	S _{xx}	I _{xx}	Syy	l _{yy}
	in. x in.	in.2	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Table 4A Adjustment Factors

Repetitive Member Factor, C, Bending design values, $F_{\rm in}$, for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, C=115, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load support the design load.

Wet Service Factor, C_M When dimension lumber is used where moisture con-tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table: Wet Comdes Festors C

F	Ft	Fv	Fel	Fc	E and Emin
0.85*	1.0	0.97	0.67	0.8**	0.9

Flat Use Factor, C_{fa} Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{ba} shall also be multiplied by the following flat use factors:

Width	Thickness (breadth)				
(depth)	2" & 3"	4"			
2" & 3"	1.0	_			
4"	1.1	1.0			
5"	1.1	1.05			
6"	1.15	1.05			
8"	1.15	1.05			
0" & wider	1.2	1.1			

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Util-ity grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Stelect Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Size Factor, C_r Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

		Fb		Ft	Fc
		Thickness (I	oreadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade ta	abulated design v	alues and size facto	rs
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

Arch 544

Slide 85 of 99

Design Example

Determine allowable stresses.

Since the size is not known you have to skip C_F (or make a guess).

Determine moment from loading.

First find the uniform beam load, w, from the floor loading. With the beam loading, calculate the maximum moment. $\omega = (PSF) \frac{c.c.}{l2} = PCF$ $(7+35) \frac{l^{2}}{l^{2}} = 42 PCF$ With the beam loading, calculate the maximum moment. $H = \frac{\omega f^{2}}{g} = \frac{42(20)^{2}}{g} = 2100^{1-47}$

Design Example

Estimate the Required Section Modulus.

$$S_{x} = \frac{H}{F_{b}^{1}} = \frac{2100(12)}{1121} = 22.47 \text{ m}^{3}$$

Compare this required Sx to the actual Sx of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

FROM TABLE 1B (HDS) 5x 2×10 21.39 (CF=1.1) MIGHT WORK 2×12 31.64 (CF=1.0)

Choose a section and test it (by analysis with all factors including C_F)

			X-)	AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	A	Sxx	I _{xx}	S _{yy}	I _{vv}
	in. x in.	in.2	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
	n Lumber (see N					
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

TRY 2×10 $C_F = 1.1$ $F_b^1 = 975(1.15 1.1) = 1233.3 \text{ psi}$ $f_b = \frac{14}{5_x} = \frac{2100(12)}{21.39} = 1178 \text{ psi} < 1233 \text{ psi}$ Vok $f_v = \frac{3}{2} \frac{V}{A} = \frac{1.5(420)}{13.88} = 45.39 \text{ psi} < 150 \text{ psi}$ Vok

:. USE 2×10

Arch 544

Slide 89 of 99

Design Example

Check Deflection

In this case LL only against IBC code limit of L/360 For short term load there is no creep factor Kcr

TABLE 1604.3 DEFLECTION LIMIT	TS ^{a, b}	, c, h, i
-------------------------------	--------------------	-----------

LU = 35 PSF = 35 PLF

CONSTRUCTION
 L
 S or
$$W^{\dagger}D + L^{d}$$
, g

 Roof members: e
 Supporting plaster or stucco ceiling
 //360
 //240

 Supporting nonplaster ceiling
 //180
 //120
 //180
 //120

 Not supporting ceiling
 //180
 //180
 //120
 //120

 Floor members
 //360
 —
 //240
 //240

 Exterior walls:
 //360
 —
 //240

 With plaster or stucco finishes
 —
 //360
 —

 With other brittle finishes
 —
 //120
 —

 Interior partitions: b
 //360
 —
 —

 With plaster or stucco finishes
 //360
 —
 —

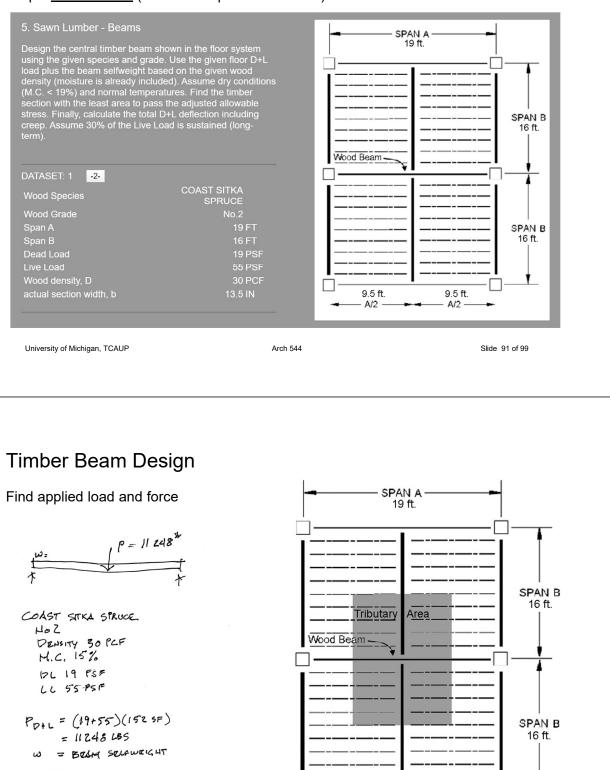
 With other brittle finishes
 //240
 —
 —

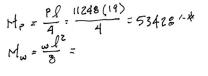
 With other brittle finishes
 //240
 —
 —

 With other brittle finishes
 //240
 —
 —

 With plaster or stucco finishes
 //240
 —
 —

 With plaster or stucco finishes
 //240
 —
 —


 Greenhouses
 —
 —


$$d_{LL} = \frac{5\omega l^4}{384 \text{ EL}} = \frac{5(35)(20)^4(1728)}{384 (1500000)(98,93)} = 0.849''$$

$$\frac{\Delta LIMIT}{360} = \frac{20'(12)}{360} = 0.667''$$

International Building Code (IBC)

Given: load, wood, span Req'd: <u>member size</u> (in this example both b and d)

9.5 ft.

A/2 ·

9.5 ft.

A/2 -

Find allowable stress

	F6 = 625 PSI
	Fr = 115 PS1
	E = 1200000 PSI
From NDS Supplement:	Emin 440000 PS(
Coast Sitka Spruce No2	

Table 4D	Refer	Reference Design Values for Visually Graded Timbers (5" x 5" and larger) ^{1,3} (Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)									
			USE WITH TAE	LE 4D A	DJUSTMENT	FACTORS					
				Design v	alues in pounds p	er square inch (p	osi)				
Species and c	ommercial	Size	Tension	Shear	Compression	Compression		Curreifie	Gradin		

Species and commercial Grade	Size classification	Bending	parallel to grain	Shear parallel to grain	compression perpendicular to grain	compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		Fb	Ft	Fv	F _{c⊥}	Fc	E	Emin	G	
COAST SITKA SPRUCE										
Select Structural	Beems and	1,150	675	115	455	775	1,500,000	550,000		
No.1	Beams and Stringers	950	475	115	455	650	1,500,000	550,000		
No.2		625	325	115	455	425	1,200,000	440,000	0.43	NLGA
Select Structural	Posts and Timbers	1,100	725	115	455	825	1,500,000	550,000	0.43	NLGA
No.1		875	575	115	455	725	1,500,000	550,000		
No.2	rinbers	525	350	115	455	500	1,200,000	440,000		

University of Michigan, TCAUP

Arch 544

TRY 1

Slide 93 of 99

Timber Beam Design

Trial 1: choose Sx and size

Sx = M / Fb

F6 ~ F6 = 625 PSI
$S_{\rm X} = \frac{M}{F} = \frac{5342g(12)}{625} = 1025 \text{ m}^3$
12×24
$\frac{1}{5_{\mathrm{X}}} = 1058 \mathrm{m}^2$
A = 270 in 2

			X-X	AXIS	Y-Y	AXIS						
Nominal	Standard Dressed	Area of	Section	Moment of	Section	Moment of	Approximate weight in pounds per linear foot of piece when density of wood equal					
Size b x d	Size (S4S) b x d in. x in.	Section A in. ²	Modulus S _{xx} in. ³	Inertia I _{xx} in. ⁴	Modulus Ś _{yy} in. ³	Inertia I _{yy} in. ⁴	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
Beams &	Stringers (see N											
10 x 14	9-1/2 x 13-1/2	128.3	288.6	1948	203.1	964.5	22.27	26.72	31.17	35.63	40.08	44.53
10 x 16	9-1/2 x 15-1/2	147.3	380.4	2948	233.1	1107	25.56	30.68	35.79	40.90	46.02	51.13
10 x 18	9-1/2 x 17-1/2	166.3	484.9	4243	263.2	1250	28.86	34.64	40.41	46.18	51.95	57.73
10 x 20	9-1/2 x 19-1/2	185.3	602.1	5870	293.3	1393	32.16	38.59	45.03	51.46	57.89	64.32
10 x 22	9-1/2 x 21-1/2	204.3	731.9	7868	323.4	1536	35.46	42.55	49.64	56.74	63.83	70.92
10 x 24	9-1/2 x 23-1/2	223.3	874.4	10274	353.5	1679	38.76	46.51	54.26	62.01	69.77	77.52
12 x 16	11-1/2 x 15-1/2	178.3	460.5	3569	341.6	1964	30.95	37.14	43.32	49.51	55.70	61.89
12 x 18	11-1/2 x 17-1/2	201.3	587.0	5136	385.7	2218	34.94	41.93	48.91	55.90	62.89	69.88
12 x 20	11-1/2 x 19-1/2	224.3	728.8	7106	429.8	2471	38.93	46.72	54.51	62.29	70.08	77.86
12 x 22	11-1/2 x 21-1/2	247.3	886.0	9524	473.9	2725	42.93	51.51	60.10	68.68	77.27	85.85
12 x 24	11-1/2 x 23-1/2	270.3	1058	12437	518.0	2978	46.92	56.30	65.69	75.07	84.45	93.84
14 x 18	13-1/2 x 17-1/2	236.3	689.1	6029	531.6	3588	41.02	49.22	57.42	65.63	73.83	82.03
14 x 20	13-1/2 x 19-1/2	263.3	855.6	8342	592.3	3998	45.70	54.84	63.98	73.13	82.27	91.41
14 x 22	13-1/2 x 21-1/2	290.3	1040	11181	653.1	4408	50.39	60.47	70.55	80.63	90.70	100.8
14 x 24	13-1/2 x 23-1/2	317.3	1243	14600	713.8	4818	55.08	66.09	77.11	88.13	99.14	110.2

University of Michigan, TCAUP

Trial 1: 12 x 24 m.c. < 19% not flat use

Table 4D **Adjustment Factors**

Size Factor, C_F

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Size 1	Factors,	CF
--------	----------	----

Depth	F _b	Ft	F _c
d > 12"	$(12/d)^{1/9}$	1.0	1.0
$d \le 12"$	1.0	1.0	1.0

Flat Use Factor, C_{fu}

When members classified as Beams and Stringers* in Table 4D are subjected to loads applied to the wide face, tabulated design values shall be multiplied by the following flat use factors:

Flat	Use	Factor,	C_{fu}	
------	-----	---------	----------	--

Grade	F _b	E and Emin	Other Properties
Select Structural	0.86	1.00	1.00
No.1	0.74	0.90	1.00
No.2	1.00	1.00	1.00

*"Beams and Stringers" are defined in NDS 4.1.3 (also see Table 1B).

University of Michigan, TCAUP

Arch 544

exceed 19% for an extended time period, design values

Wet Service Factor, C_M

shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

When timbers are used where moisture content will

Wet	Service	Factors,	CM
-----	---------	----------	----

F_{b}	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{min}}$
1.00	1.00	1.00	0.67	0.91	1.00

$$C_{\rm F} = \left(\frac{12}{23.5}\right)^{1/9} = 0.928$$

Slide 95 of 99

Timber Beam Design

Trial 1: 12 x 24

Adjustment Factors:

 C_L

Table 3.3.3 "Concentrated load at center with lateral support at center" le = 1.11 lu

$$C_L$$
:
 $l_0 = 9.5'$ $l_0/d = 4.851$
 $= 114''$

$$R_e = 1.11 (L_b)$$

= 1.11(114) = 126.5

$$R_{B} = \sqrt{\frac{led}{b^{2}}} = 4.74$$

$$F_{bFE} = \frac{1.2 \text{ Emmin}}{R_{B}^{2}} = \frac{1.2(440000)}{4.74^{2}} = 2.3482 \text{ psi}$$

$$F_{b}^{*} = F_{b}(C_{F}) = 65 \quad (0.928) = 580$$

GL = 0,999

$$F_{be} = 40.5$$

University of Michigan, TCAUP

Trial 1: 12×24 Sx = 1058 in³ A = 270 in²

TRY 1 CONT.
12×24
$$C_F = 0.928$$
 $C_L = 0.999$ $C_D = 1.0$
 $F_D^{L} = F_D (C_D C_F C_L) = 625 (1 0.928 0.999) = 579.3 \text{ psi}$
 $W_{SELF} = D \frac{AREA}{144} = 30 \frac{270 \text{ m}^2}{144} = 56.25 \text{ PLF}$
 $M_W = \frac{W L^2}{8} = \frac{56.25 (19)^2}{8} = 2538 \text{ FT-LB}$
 $M_{TOTAL} = M_P + M_W = 53428 + 2538 = 55969 \text{ FT-LB}$
 $S'REQ = \frac{M_F}{F} = \frac{55969 (12)}{579.3} = 1159.4 \text{ m}^3$

1159.4 > 1058 so 12 x 24 is too small

University of Michigan, TCAUP

Arch 544

Slide 97 of 99

Timber Beam Design

Trial 2: Sx req'd = 1159 in^3

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber (Cont.)

			X-)	(AXIS	Y-Y	AXIS						
	Standard	Area		Moment		Moment	Appro	ximate we	eight in po	ounds per	linear foo	t (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of	of piece when density of wood e				wood equa	uals:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
bxd	bxd	Α	S _{xx}	I _{xx}	Ś _{yy}	lyy	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in. ²	in. ³	in.4	in. ³	in. ⁴						
Beams & Stringers (see NDS 4.1.3.3 and NDS 4.1.5.3)												
10 x 14	9-1/2 x 13-1/2	128.3	288.6	1948	203.1	964.5	22.27	26.72	31.17	35.63	40.08	44.53
10 x 16	9-1/2 x 15-1/2	147.3	380.4	2948	233.1	1107	25.56	30.68	35.79	40.90	46.02	51.13
10 x 18	9-1/2 x 17-1/2	166.3	484.9	4243	263.2	1250	28.86	34.64	40.41	46.18	51.95	57.73
10 x 20	9-1/2 x 19-1/2	185.3	602.1	5870	293.3	1393	32.16	38.59	45.03	51.46	57.89	64.32
10 x 22	9-1/2 x 21-1/2	204.3	731.9	7868	323.4	1536	35.46	42.55	49.64	56.74	63.83	70.92
10 x 24	9-1/2 x 23-1/2	223.3	874.4	10274	353.5	1679	38.76	46.51	54.26	62.01	69.77	77.52
12 x 16	11-1/2 x 15-1/2	178.3	460.5	3569	341.6	1964	30.95	37.14	43.32	49.51	55.70	61.89
12 x 18	11-1/2 x 17-1/2	201.3	587.0	5136	385.7	2218	34.94	41.93	48.91	55.90	62.89	69.88
12 x 20	11-1/2 x 19-1/2	224.3	728.8	7106	429.8	2471	38.93	46.72	54.51	62.29	70.08	77.86
12 x 22	11-1/2 x 21-1/2	247.3	886.0	9524	473.9	2725	42.93	51.51	60.10	68.68	77.27	85.85
12 x 24	11-1/2 x 23-1/2	270.3	1058	12437	518.0	2978	46.92	56.30	65.69	75.07	84.45	93.84
14 x 18	13-1/2 x 17-1/2	236.3	689.1	6029	531.6	3588	41.02	49.22	57.42	65.63	73.83	82.03
14 x 20	13-1/2 x 19-1/2	263.3	855.6	8342	592.3	3998	45.70	54.84	63.98	73.13	82.27	91.41
14 x 22	13-1/2 x 21-1/2	290.3	1040	11181	653.1	4408	50.39	60.47	70.55	80.63	90.70	100.8
14 x 24	13-1/2 x 23-1/2	317.3	1243	14600	713.8	4818	55.08	66.09	77.11	88.13	99.14	110.2
16 x 20	15-1/2 x 19-1/2	302.3	982.3	9578	780.8	6051	52.47	62.97	73.46	83.96	94.45	104.9
16 x 22	15-1/2 x 21-1/2	333.3	1194	12837	860.9	6672	57.86	69.43	81.00	92.57	104.1	115.7
16 x 24	15-1/2 x 23-1/2	364.3	1427	16763	941.0	7293	63.24	75.89	88.53	101.2	113.8	126.5

try 14 x 24 Sx = 1243 in³

Trial 2: 14 x 24 (13 $\frac{1}{2}$ x 23 $\frac{1}{2}$) Sx = 1243 in³

revise adjustment factors:

$$C_{\mu} = \left(\frac{12}{23.5}\right)^{\frac{1}{2}} = 0.928$$

$$C_{\mu} = \left(\frac{12}{23.5}\right)^{\frac{1}{2}} = 0.928$$

$$C_{\mu} = \left(\frac{12}{6} = \frac{126.5}{13.5^{2}}\right)^{\frac{1}{2}} = \frac{1}{4.039}$$

$$F_{0} = \frac{1}{4.039^{2}} = \frac{1}{32.359.8} = \frac{1}{32.359.8} = \frac{1}{32.359.8}$$

$$F^{0} = \frac{1}{580} = \frac{520.0}{580} = \frac{550.0}{591}$$

$$F_{0} = \frac{1}{580} = \frac{550.0}{580} = \frac{550.0}{591}$$

$$F_{0} = \frac{52359.8}{580} = \frac{557.79}{580} = \frac{557.79}{580}$$

$$C_{L} = 0.999$$

$$C_{L} = 0.999$$

$$C_{L} = 0.999$$

$$C_{L} = 0.999$$

$$F_{L} = \frac{1}{12} + \frac{1$$

CHECK SHEAR: $V_{Max} = \frac{\omega}{2} + \frac{P}{2} = \frac{66.1(19)}{2} + \frac{11248}{2} = 6251.9 \text{ LB}$ $f_V = \frac{3}{2} \frac{V}{4} = \frac{3}{2} \frac{6251.9}{317.3} = 29.56 \text{ psi} < 115 = F_V^{+}$

:. USE 14x 24

Trial 2: 14×24 Ix = 14600 in⁴

DEFLECTION

check deflection: assume 30% of LL is sustained

see NDS 3.5 Kcr = 1.5 "seasoned lumber"

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

CONSTRUCTION	L	S or W ^f	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	-	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	111	//360 //240 //120	
Interior partitions: ^b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120		111
Farm buildings	-	-	//180
Greenhouses	_		//120

University of Michigan, TCAUP

L/240 = 19(12)/240 = 0.95"

 $L_{ONG} - TEAM : W_{0} = \frac{F_{0}}{384 \text{ EI}} = \frac{5(66.1)(19)^{4}(1728)}{384(1200000)(14600)} = 0.011''$ $\frac{\Delta}{P_{0}} = \frac{F_{0} \cdot l^{3}}{45 \text{ EI}} = \frac{2888(19)^{3}(1728)}{48(1200000)(14600)} = 0.0407''$ $\Delta F_{L 302} = \frac{0.3(F_{L}) \cdot l^{3}}{48 \text{ EI}} = \frac{0.3(8360)(19)^{5}(1728)}{48(1200000)(14600)} = 0.035'''$ $\Delta L_{T} = 0.0867''$

SHORT-TERM : 70% R

$$\Delta P_{L20} = \frac{0.7(R)l^3}{45 EI} = \frac{0.7(3360)(19)^3(1725)}{48(1200000)(14600)} = 0.0825''$$

TOTAL DEFLECTION ;

$$\Delta_{T} = K_{cr} \Delta_{Lr} + \Delta_{ST}$$

= 1.5 (0.0867) + 0.0825 = 0.213"

Arch 544

Slide 101 of 99