
Architecture 544 Wood Structures

Wood Beam Analysis and Design

- · ASD approach
- · NDS criteria
- Wood Beam Analysis
- · Wood Beam Design

University of Michigan, TCAUP Arch 544 Slide 1 of 88

Allowable Stresses

From the NDS Supplement

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F,	F _{o⊥}	F _e	Ε	E _{min}	G	
HEM-FIR										
Select Structural No. 1 & Btr No. 1 No. 2 No. 3	2" & wider	1,400 1,100 975 850 500	925 725 625 525 300	150 150 150 150 150	405 405 405 405 405	1,500 1,350 1,350 1,350 1,300 725	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000	580,000 550,000 550,000 470,000 440,000	0.43	WCLIB WWPA
Stud Construction Standard Utility	2" & wider 2" - 4" wide	675 975 550 250	400 600 325 150	150 150 150 150	405 405 405 405	800 1,550 1,300 850	1,200,000 1,300,000 1,200,000 1,100,000	440,000 470,000 440,000 400.000		

Allowable Stress Design by NDS Flexure

F_b

 \geq

 \mathbf{f}_{k}

Allowable Flexure Stress F_b'

F_b from NDS Supplement tables determined by species and grade

F_b' = F_b (usage factors)

usage factors for flexure:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_L Beam Stability Factor

C_F Size Factor

Cfu Flat Use

C_i Incising Factor

C_r Repetitive Member Factor

Actual Flexure Stress f_b

 $f_b = Mc/I = M/S$

 $S = I/c = bd^2/6$

University of Michigan, TCAUP

Wood Structures

Slide 3 of 88

Allowable Stress Design by NDS Shear

 \geq

Allowable Shear Stress Fv'

 $\mathbf{F}_{\mathbf{v}}$ from tables determined by species and grade

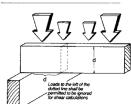
 $\mathbf{F_v}' = \mathbf{F_v}$ (usage factors)

usage factors for shear:

C_D Load Duration Factor

 \mathbf{C}_{M} Moisture Factor

C_t Temperature Factor


C_i Incising Factor

Actual Shear Stress fv

 $f_v = VQ / Ib = 1.5 V/A$

Can use V at d from support as maximum

Shear at Supports

Allowable Stress Design by NDS Compression

Allowable Compression Stress F_c'

 $\rm F_{\rm c}$ from NDS Supplement tables determined by species and grade

 F_c ' = F_c (usage factors)

usage factors for flexure:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_F Size Factor

C_i Incising Factor

C_P Column Stability Factor

 \mathbf{f}_{c}

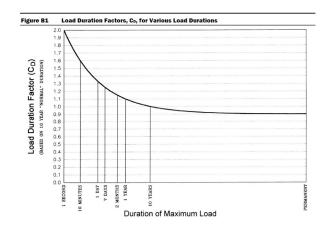
Actual Compression Stress f_c

 $f_c = P/A$

University of Michigan, TCAUP Wood Structures Slide 5 of 88

Adjustment Factors

Table 4.3.1	,	Applic	cabili	ty of	Adju	stme	nt Fa	ctors	for S	awn	Lumb	er			
		ASD only		ASD and LRFD							LRFD only				
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	4 Format Conversion Factor	Ф Resistance Factor	Time Effect Factor
$F_b' = F_b$	X	C_{D}	C_{M}	C_{t}	C_{L}	$C_{\mathtt{F}}$	C_{fu}	$C_{\mathbf{i}}$	C_{r}	-	-	-	2.54	0.85	λ
$F_t' = F_t$	X	C_D	C_{M}	C_{t}	-	C_{F}	-	$C_{\mathbf{i}}$	-	-	-	-	2.70	0.80	λ
$F_{v}' = F_{v}$	X	C_{D}	C_{M}	C_{t}	-	-	-	Ci	-	-	-	-	2.88	0.75	λ
$F_c' = F_c$	X	C_{D}	C_{M}	C_{t}	-	$C_{\mathbf{F}}$	-	$C_{\mathbf{i}}$	-	СР	-	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	X	-	C_{M}	C_{t}	-	-	-	Ci	-	-	-	Сь	1.67	0.90	-
E' = E	х	-	C_{M}	C_{t}	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	X	-	C_{M}	C_{t}	-	-	-	Ci	-	-	C_T	-	1.76	0.85	-


Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$$

Usage factors for flexure: C_D Load Duration Factor

University of Michigan, TCAUP

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

(1) Actual stress due \leq (0.9) (Design value) to (DL) (2) Actual stress due to (DL+LL) \leq (1.0) (Design value) (3) Actual stress due to (DL+WL) \leq (1.6) (Design value) (4) Actual stress due to (DL+LL+SL) \leq (1.15) (Design value) (5) Actual stress due to (DL+LL+WL) \leq (1.6) (Design value) (6) Actual stress due to (DL+SL+WL) \leq (1.6) (Design value) (7) Actual stress due to (DL+LL+SL+WL) \leq (1.6) (Design value)

Arch 544 Slide 7 of 88

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$$

Usage factors for flexure:

Ct Temperature Factor

Table 2.3.3	Temperature Fa	ctor, Ct		
Reference Design			Ct	
Values	Moisture - Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9
E E EIE	Dry	1.0	0.8	0.7
F_b , F_v , F_c , and $F_{c\perp}$	777-4	1.0	0.7	0.5

Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

C_M Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

F_b	F_{t}	$F_{\rm v}$	$F_{\rm c\perp}$	F_c	\boldsymbol{E} and \boldsymbol{E}_{min}
0.85*	1.0	0.97	0.67	0.8**	0.9

^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

Size Factors, C_F

		F	ь	F _t	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

University of Michigan, TCAUP

Arch 544

Slide 9 of 88

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

C_{fu} Flat Use

C_r Repetitive Member Factor

Flat Use Factor, Cfu

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, Cfu

Width	Thickness (breadth)
(depth)	2" & 3"	4"
2" & 3"	1.0	_
4"	1.1	1.0
5"	1.1	1.05
6"	1.15	1.05
8"	1.15	1.05
10" & wider	1.2	1.1

Repetitive Member Factor, C_r

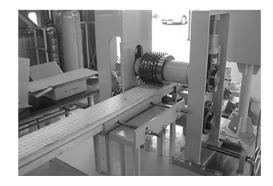
Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade


 F_b ' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)

Usage factors for flexure: C_i Incising Factor

Table 4.3.8 Incising Factors, C,

Design Value	C_{i}	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
$F_{c\perp}$	1.00	

University of Michigan, TCAUP Arch 544 Slide 11 of 88

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $F_{b}' = F_{b} (C_{D} C_{M} C_{t} C_{t} C_{F} C_{fu} C_{i} C_{r})$

Usage factors for flexure: **C**_L Beam Stability Factor

3.3.3 Beam Stability Factor, CL

- 3.3.3.1 When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and $C_L = 1.0$.
- 3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.
- 3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.
- 3.3.3.4 Where the depth of a bending member exceeds its breadth, d > b, lateral support shall be provided at points of bearing to prevent rotation.

4.4.1 Stability of Bending Members

- 2x4 (a) $d/b \le 2$; no lateral support shall be required.
- 2x6-8 (b) 2 < d/b ≤ 4; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) 4 < d/b ≤ 5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.</p>
- 2x12 (d) 5 < d/b ≤ 6; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e) 6 < d/b ≤ 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

C_{l}

 C_L = 1.0 when bracing meets 4.4.1 for the depth/width ratio

Otherwise

C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1 2x6 2x8	The ends of the beam should be held in position	END BLOCKING JOIST OF BBAM
^{5 to 1} 2x10	Hold compression edge in line (continuously)	NAILING HEATHING/DECHING
6 to 1 2x12	Diagonal bridging should be used	SHBATHING/ PBOMING JUIST BAIDGING
^{7 to 1} 2x14	Both edges of the beam should be held in line	PA-PATING NAILED SHEATHING OR PROPERTY THE ADMITCH

University of Michigan, TCAUP

Arch 544

Slide 13 of 88

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, $\rm C_L$ is calculated using equation 3.3-6

The maximum allowable slenderness, $R_{\textrm{B}}$ is 50

Cantilever ¹	when $\ell_{\rm u}/{\rm d} < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =1.33 ℓ _u		$\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3d$
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$,	$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =2.06 ℓ _u	in the second	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$	A 19	$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm c}$ =1.68 $\ell_{\rm u}$	× ,
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm c}$ =1.68 $\ell_{\rm u}$	>
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	to the same of the
Equal end moments		ℓ _e =1.84 ℓ _u	

For single span or cantilever bending members with loading conditions not specified in Table 3.3.3:
 £ = 2.06 £ when £/d ≤ 7

3.3.3.6 The slenderness ratio, R_{B} , for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{h^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, $R_{\textrm{B}},$ shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated

$$C_{L} = \frac{1 + \left(F_{bE}/F_{b}^{\star}\right)}{1.9} - \sqrt{\left\lceil\frac{1 + \left(F_{bE}/F_{b}^{\star}\right)^{2}}{1.9}\right\rceil^{2} - \frac{F_{bE}/F_{b}^{\star}}{0.95}} \quad (3.3-6)$$

where

$$\begin{split} F_b{}^* &= \text{reference bending design value multiplied by} \\ &\quad \text{all applicable adjustment factors except } C_{fu}, \\ &\quad C_V \text{ (when } C_V \leq 1.0), \text{ and } C_L \text{ (see 2.3), psi} \end{split}$$

$$F_{bE} = \frac{1.20\,{E_{min}}'}{{R_B}^2}$$

 $[\]ell_e = 2.06 \ \ell_u$ when $\ell_v/d < 7$ $\ell_e = 1.63 \ \ell_u + 3d$ when $7 \le \ell_v/d \le 14.3$

Multiple span applications shall be based on table values or engineering analysis

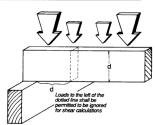
Adjustment Factors for Shear

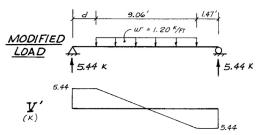
Allowable Flexure Stress F,'

F_v from tables determined by species and grade

$F_v' = F_v$ (usage factors)

Usage factors for shear:


C_D Load Duration Factor


C_M Moisture Factor

Temperature Factor

Incising Factor

Shear at Supports

Modified shear V^\prime used to compute reduced shear f^\prime_v

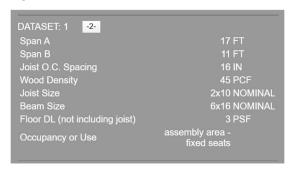
University of Michigan, TCAUP

Arch 544

Slide 15 of 88

Analysis Procedure

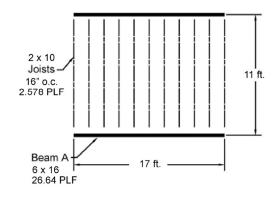
Given: loading, member size, material and span.


Req'd: Safe or Unsafe

- 1. Find Max Shear & Moment
 - Simple case equations
 - Complex case diagrams
- 2. Determine actual stresses
 - $f_b = M/S$
 - $f_v = 1.5 \text{ V/A}$
- 3. Determine allowable stresses
 - F_b and F_v (from NDS)
 - F_b' = F_b (usage factors)
 F_v' = F_v (usage factors)
- 4. Check that actual ≤ allowable
 - $f_b \le F'_b$
 - f_v ≤ F'_v
- 5. Check deflection
- Check bearing (F_b = Reaction/A_{bearing})

			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	Α	S _{xx}	l _{xx}	S _{vv}	I _{vv}
	in. x in.	in. ²	in. ³	in.4	in. ³	in. ⁴
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N	DS 4.1.3.2	2) and Dec		NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

from NDS 2012


Given:

Req'd: pass or fail for floor joist

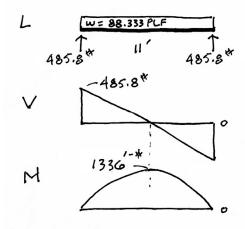
University of Michigan, TCAUP

ASCE-7 Table 4.3-1: Live Load = 60 PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:

Arch 544 Slide 17 of 88

Analysis Example (joist)

1. Find Max Shear & Moment on Joist


By equations:

Shear:

$$\frac{wl}{2} = \frac{88.336 (11)}{2} = 485.848 \text{ lbs}$$

Moment:

$$\frac{wl^2}{8} = \frac{88.336(11^2)}{8} = 1336.08 \text{ ft-lbs}$$

- 2. Determine actual stresses in joists
 - $f_b = M/S$
 - $f_v = 1.5 \text{ V/A}$

$$f_b = \frac{M}{s_x} = \frac{1336' - (12)}{21.39 \, \text{m}^3} = 749.5 \, \text{PSI}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (485.8)^{\frac{1}{2}}}{13.86 in^{2}} = 52.5 PSI$$

University of Michigan, TCAUP

Arch 544

Slide 19 of 88

Species and Grade

- 3. Determine allowable stresses NDS Supplement

 - F_b = 875 psi
 F_v = 135 psi

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

			Design values in pounds per square inch (psi)							
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F₀	Ft	F _v	F₀⊥	F _o	Е	Emin	G	
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		
No. 3		500	250	135	425	650	1,200,000	440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction	100000000000000000000000000000000000000	1,000	500	135	425	1,400	1,300,000	470,000		100000000
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000		

- 3. Determine allowable stresses NDS Supplement
 - Adjustment Factors

Determine factors:

CD = ? CM = 1 Ct = 1 CL = ? CF = ? Cfu = 1 Ci = 1 Cr = ?

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		SD aly		ASD and LRFD								LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	хС	D	См	Ct	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_{v} = F_{v}$	хС	D	См	C_{t}	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

University of Michigan, TCAUP Arch 544 Slide 21 of 88

Analysis Example

C_D Load duration factor

Occupancy LL (10 years) = 1.0

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

2 x 10 use 1.1

Cinn	La atama	C
Size	Factors,	CF.

		Size Factors,	$C_{\rm F}$			
		F	² b	Ft	F_c	
		Thickness	(breadth)			
Grades	Width (depth)	2" & 3"	4"			
	2", 3", & 4"	1.5	1.5	1.5	1.15	
Select	5"	1.4	1.4	1.4	1.1	
Structural,	6"	1.3	1.3	1.3	1.1	
No.1 & Btr,	8"	1.2	1.3	1.2	1.05	
No.1, No.2,	10"	1.1	1.2	1.1	1.0	
No.3	12"	1.0	1.1	1.0	1.0	
	14" & wider	0.9	1.0	0.9	0.9	
	2", 3", & 4"	1.1	1.1	1.1	1.05	
Stud	5" & 6"	1.0	1.0	1.0	1.0	
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	rs	
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0	
Standard						
Utility	4"	1.0	1.0	1.0	1.0	
	2" & 3"	0.4	_	0.4	0.6	

C_r Repetitive Member Factor

16" o.c. : $C_r = 1.15$

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Arch 544

Slide 23 of 88

Analysis Example

 C_L Repetitive Member Factor 2x10 w/ flooring: $C_L = 1.0$

 C_L = 1.0 if depth/width ratio meets criteria in 4.4.1 C_L = 1.0

Otherwise:

 C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1 2x6 2x8	The ends of the beam should be held in position	BIND BLOCKING JOIST OF DEAM
2x10	Hold compression edge in line (continuously)	Joint of Bram
6to 1 2x12	Diagonal bridging should be used	SHBATHINGY DBOPING JUIST DPUDGING
7to 1 2x14	Both edges of the beam should be held in line	BA-DAING MAISO SHEATHING OF DECRENCY TO PROTECT

3. Determine allowable stresses

- $F_b' = F_b (C_D)(C_L)(C_F)(C_f)$ $F_b' = 875 (1.0) (1.0) (1.1) (1.0) (1.15) = 1107 psi$
- F_v' = F_v (C_D)
 F_v' = 135 (1.0) = 135 psi

4. Check that actual ≤ allowable

- f_b < F'_b
 f_v < F'_v

$$f_b = \frac{M}{s_x} = \frac{1336' - (12)}{21.39 \text{ is}^3} = 749.5 \text{ PSI}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (485.8)^{\frac{1}{2}}}{13.86 in^{2}} = 52.5 PSI$$

- 5. Check deflection
- 6. Check bearing $(F_{cp} = R/A_b)$

University of Michigan, TCAUP

Arch 544

Slide 25 of 88

Analysis Example

Check deflection

- NDS 3.5
- Δ_{LT} Long term
- Δ_{ST} Short term
- K_{cr} creep factor

$$\Delta_T = K_{cr} \Delta_{LT} + \Delta_{ST}$$
 (NDS 3.5-1)

- 1.5 dry, seasoned lumber
- 2.0 wet service conditions
- · 2.0 wood panels
- 2.0 CLT (dry)

$$\Delta_{\xi} = \frac{5 \omega \ell^4}{384 \text{ EI}} = \frac{5(88.336) 11^4 (1728)}{384 (1400000)(98.73)}$$
$$= 0.210''$$

$$\frac{1}{360} = \frac{11'(12)}{360} = 0.367''$$

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

CONSTRUCTION	L	S or Wf	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	_	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	_	//360 //240 //120	
Interior partitions: b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120	=	=
Farm buildings	-		//180
Greenhouses	_	_	//120

6. Check bearing : $F_{c1} < P/A_b$

$$F_{c\perp}$$
 = 425 psi

$$P = R = 485.8 \text{ lbs}$$

 $A_b = 1.5" (1") = 1.5 \text{ in}^2$

$$f_b = \frac{485.8}{1.5} = 323.8 \text{ psi} < 425 \text{ psi} \text{ ok}$$

3.10.4 Bearing Area Factor, Cb

Reference compression design values perpendicular to grain, $F_{c.l.}$, apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearings less than 6" in length and not nearer than 3" to the end of a member, the reference compression design value perpendicular to grain, $F_{c.l.}$, shall be permitted to be multiplied by the following bearing area factor, C_b :

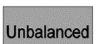
$$C_{b} = \frac{\ell_{b} + 0.375}{\ell_{b}} \tag{3.10-2}$$

where:

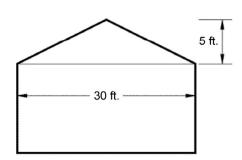
 $\ell_{\rm b}$ = bearing length measured parallel to grain, in.

Equation 3.10-2 gives the following bearing area factors, C_b , for the indicated bearing length on such small areas as plates and washers:

Tab	le 3.1	0.4	Ве	earing	Area	Facto	rs, C _b
$\overline{\ell_{\mathrm{b}}}$	0.5"	1"	1.5"	2"	3"	4"	6" or more
C_b	1.75	1.38	1.25	1.19	1.13	1.10	1.00


For round bearing areas such as washers, the bearing length, $\ell_{\rm b}$, shall be equal to the diameter.

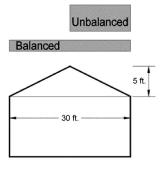
University of Michigan, TCAUP Arch 544 Slide 27 of 88


Design Procedure – Joist or Rafter

Given: loading criteria, wood, span, size Req'd: controlling load, o.c. spacing

- 1. Determine each load
 - · check applicable load cases
 - · determine loads
 - · choose controlling load case
- 2. Find Max Shear & Moment
 - assume o.c. spacing = 12"
- 3. Calculate actual stresses
- 4. Calculate allowable stresses
 - · find applicable factors
- 5. Choose spacing
 - · determine utilization ratio: fb/Fb
 - · divide o.c. spacing by the ratio
 - round down to modular spacing (12, 16 or 24)
- 6. Check shear stress
- Check deflection
- Check bearing

Balanced



Given: 2x10 Hem Fir No. 2 rafter

Req'd: rafter spacing

1. Determine Loads:

Dead: ASCE-7 Tab. C3.1-1a \rightarrow 7 PSF (12" o.c.)

Roof Live: ASCE-7 4.8.2 \rightarrow 20 PSF Snow: ASCE-7 Fig. 7.2-1: pg = 50 PSF

ASCE-7 2.4.1 ASD load combinations:

$$\begin{array}{ll} D & C_D = 0.9 \\ D + Lr & C_D = 1.25 \\ D + S & C_D = 1.15 \end{array}$$

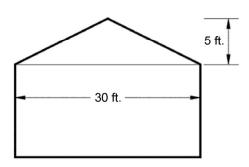
University of Michigan, TCAUP Arch 544 Slide 29 of 88

Analysis Example (rafter)

Roof Live Load

- Minimum L_r between 12 PSF and 20 PSF
- $L_r = 20 R_1 R_2$
- See 4.9.1

$$\begin{array}{ll} & 1 & \qquad \text{for } A_t \leq 200 \text{ ft}^2 (18.58 \text{ m}^2) \\ R_1 = & 1.2 - 0.001 A_t & \qquad \text{for } 200 \text{ ft}^2 < A_t < 600 \text{ ft}^2 \\ & 0.6 & \qquad \text{for } A_t \geq 600 \text{ ft}^2 (55.74 \text{ m}^2) \end{array}$$


where A_t = tributary area in ft² (m²) supported by any structural member and

where, for a pitched roof, F = number of inches of rise per ft.

for an arch or dome, F = rise-to-span ratio multiplied by 32.

Balanced

Design Example (rafter)

p_g - ground snow (from map)

p_f - flat roof snow load

 $p_f = 0.7 C_e C_t I_s p_g$

• Eq. 7.3-1

Low Slope Roofs

- Monoslope, hip or gable < 15°
- $4/12 = 18.4^{\circ}$

Minimum for Low Slope Roofs

- Minimum where $p_g \le 20 = I_s p_g PSF$
- Minimum where $p_q > 20 = I_s 20 \text{ PSF}$

7.3 FLAT ROOF SNOW LOADS, p_f

The flat roof snow load, p_f , shall be calculated in lb/ft² (kN/m²) using the following formula:

$$p_f = 0.7C_eC_tI_sp_g$$
 (7.3-1)

7.3.1 Exposure Factor, Ce

The value for C_{ϵ} shall be determined from Table 7-2.

7.3.2 Thermal Factor, C_t

The value for C_t shall be determined from Table 7-3

7.3.3 Importance Factor, I_s

The value for I_s shall be determined from Table 1.5-2 based on the Risk Category from Table 1.5-1.

7.3.4 Minimum Snow Load for Low-Slope Roofs, p_m

A minimum roof snow load, p_m , shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. The minimum roof snow load for low-slope roofs shall be obtained using the following formula:

Where p_g is 20 lb/ft² (0.96 kN/m²) or less:

 $p_m = I_s p_g$ (Importance Factor times p_g)

Where p_g exceeds 20 lb/ft² (0.96 kN/m²):

 $p_m = 20 (I_s)$ (20 lb/ft² times Importance Factor)

This minimum roof snow load is a separate uniform load case. It need not be used in determining

University of Michigan, TCAUP

Arch 544

Slide 31 of 88

Design Example (rafter)

C_e – Exposure Factor

- Table 7-2
- · Terrain Category C
- · Roof Exposure "Partially Exposed"
- Ce = 1.0

EXPOSURE C FLAT OPEN GRASSLAND WITH SCATTERED OBSTRUCTIONS HAVING HEIGHTS GENERALLY LESS THAN 30 FT

Table 7-2 Exposure Factor, C_{ϵ}

	Ex		
Terrain Category	Fully Exposed	Partially Exposed	Sheltered
B (see Section 26.7)	0.9	1.0	1.2
C (see Section 26.7)	0.9	1.0	1.1
D (see Section 26.7)	0.8	0.9	1.0
Above the treeline in windswept mountainous areas.	0.7	0.8	N/A
In Alaska, in areas where trees do not exist within a 2-mile $(3-km)$ radius of the site.	0.7	0.8	N/A

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.

"Definitions: Partially Exposed: All roofs except as indicated in the following text. Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load (h_b) , or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.

^bObstructions within a distance of $10h_o$ provide "shelter," where h_o is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

Design Example (rafter)

C_t – Thermal Factor

Table 7.3-2

• given = 1.0

I_s – Importance Factor

Table 1.5-2

• given category II: Is = 1.0

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, I _s	Ice Importance Factor— Thickness, I _i	Ice Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
I	0.80	0.80	1.00	1.00
П	1.00	1.00	1.00	1.00
Ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

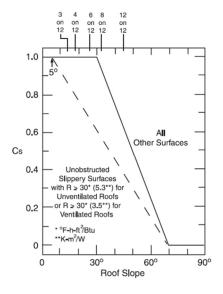
Table 7.3-2 Thermal Factor, C,

Thermal Condition ^a	C_t
All structures except as indicated below	1.0
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-value) between the ventilated space and the heated space exceeds $25^{\circ}\text{F} \times h \times \text{ft}^2/\text{Btu}$ (4.4 K×m ² /W)	1.1
Unheated and open air structures	1.2
Freezer building	1.3
Continuously heated greenhouses ^b with a roof having a thermal resistance (R-value) less than $2.0^{\circ}\text{F} \times h \times \text{ft}^2/\text{Btu}$ (0.4 K × m ² /W)	0.85

University of Michigan, TCAUP Arch 544

Design Example (rafter)

p_f - flat roof snow load $p_f = 0.7 C_e C_t I_s p_g$ 0.7 1.0 1.0 1.0 50 = 35 psf


p_s - sloped roof snow load $p_s = C_s p_f$

• Eq. 7.4-1

C_s – Roof Slope Factor

- Figure 7-2
- C₁ = C_t
- · Equations given in commentary C7.4
- · given roof surface "not slippery"
- Cs = 1.0

 $p_s = C_s p_f = 1.0 35psf = 35 psf$

7-2a: Warm roofs with C1<1.0

Slide 33 of 88

^aThese conditions shall be representative of the anticipated conditions during winters for the life of the structure.

^bGreenhouses with a constantly maintained interior temperature of 50°F (10°C) or more at any point 3 ft (0.9 m) above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure.

Design Example (rafter)

Balanced

• $p_s = 35 psf$

Unbalanced

For W ≤ 20FT

• $I_s \times p_g = 1.0 50 = 50 \text{ psf}$

For W > 20FT

• See Fig. 7.6-2

Unbalanced Gable Roof Loads

- **Not** for F > 7 on 12 (30.2°)
- Not for $F < \frac{1}{2}$ on 12 (2.38°)

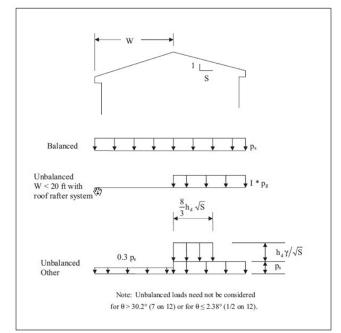


FIGURE 7-5 Balanced and Unbalanced Snow Loads for Hip and Gable Roofs.

University of Michigan, TCAUP

Arch 544

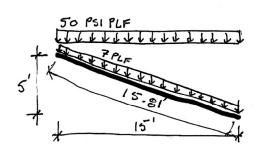
Slide 35 of 88

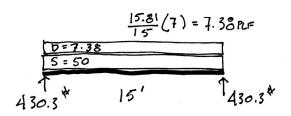
Analysis Example (rafter)

Controlling (greatest) load

- D = 7 psf (on surface)
- S = 50 psf (projected)
- D + S = 57.38 psf (projected)

2. Find Max Shear & Moment


By equations (projected):


Shear:

$$\frac{wl}{2} = \frac{57.38 (15)}{2} = 430.3 \text{ lbs}$$

Moment:

$$\frac{wl^2}{8} = \frac{57.38(15^2)}{8} = 1614 \text{ ft-lbs}$$

- 3. Determine actual stresses
 - f_b = M/S
 - $f_v = 1.5 \text{ V/A}$

$$f_b = \frac{M}{5_x} = \frac{1614^{...}(12)}{21.39in^3} = 905.4 psi$$

$$f_V = \frac{3}{2} \frac{V}{A} = \frac{1.5(430.3)}{13.88} = 46.5 \text{ PSI}$$

University of Michigan, TCAUP

Arch 544

Slide 37 of 88

Species and Grade

- 4. Determine allowable stresses NDS Supplement
 - F_b = 850 psi
 F_v = 150 psi

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F₀	F,	F,	F _{e⊥}	F _e	E	Emin	G	
HEM-FIR										\neg
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WCLIB
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		VVVVPA
Construction		975	600	150	405	1,550	1,300,000	470,000	1	ı 1
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000	I	ı 1
Utility		250	150	150	405	850	1,100,000	400,000		

- Determine allowable stresses NDS Supplement
 - Adjustment Factors

Determine factors:

CD = ?CM = 1Ct = 1 CL = ?CF = ? Cfu = 1Ci = 1 Cr = ?

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

	- 1	ASD only		ASD and LRFD									LRFD only		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	х	C_D	См	Ct	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_{\mathbf{v}} = F_{\mathbf{v}}$	x	C_D	См	C_{t}	-	-	-	C_{i}	-	-	-	-	K _F	$\phi_{\rm v}$	λ

University of Michigan, TCAUP Arch 544 Slide 39 of 88

Analysis Example

C_D Load duration factor

Snow Load (2 months) = 1.15

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

C_F Size factor

2 x 10 use 1.1

Size Factors, C _F	
------------------------------	--

		Size Factors,	C _F		
		F	b	F _t	F_c
		Thickness	Thickness (breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	1—1	0.4	0.6

C_r Repetitive Member Factor

12" o.c. : C_r = 1.15

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Arch 544

Slide 41 of 88

Analysis Example

 C_L Repetitive Member Factor 2x10 w/ flooring: $C_L = 1.0$

 C_L = 1.0 if depth/width ratio meets criteria in 4.4.1 C_L = 1.0

Otherwise:

 C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1 2x6 2x8	The ends of the beam should be held in position	BIND BLOCKING JOICT OF DRAM
5 to 1 2x10	Hold compression edge in line (continuously)	NALLING OHEATH INSP/SECHING
6to 1 2x12	Diagonal bridging should be used	SHEATHING/ DEOPING JUIST BADGING
7 to 1 2 x 1 4	Both edges of the beam should be held in line	BALLED SHEATHING OR DECEMENT THE BRITISH

- 4. Determine allowable stresses
 - $F_b' = F_b (C_D)(C_L)(C_F)(C_r)$
 - F_b' = 850 (1.15) (1.0) (1.1) (1.0) (1.15) = 1236 psi

 - $F_v' = F_v (C_D)$ $F_v' = 150 (1.15) = 172.5 \text{ psi}$
- 5. Check that actual ≤ allowable
 - $f_b < F'_b$
 - f_v < F'_v
- 6. Utilization Ratio
 - 905.4/1236 = 0.732
 - 12" o.c. / 0.732 = 16.38
 - try 2x10 at 16" o.c.
 - f_b at 16" o.c.= 905.4 (16/12) = 1207 psi
- $f_b = \frac{M}{5x} = \frac{1614^{-6}(12)}{21.39\pm^3} = 905.4 \text{ ps}$
- $f_{V} = \frac{3}{2} \frac{V}{A} = \frac{1.5(430.3)}{13.88} = 46.5 \, \text{P31}$

- 7. Check deflection
- 8. Check bearing ($F_{cp} = R/A_b$)

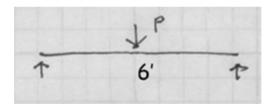
University of Michigan, TCAUP

Arch 544

Slide 43 of 88

Analysis Procedure

Given: member size, material and span. Req'd: Max. Safe Load (capacity)


- 1. Assume f = F
 - Maximum actual = allowable stress
- 2. Solve stress equations for force
 - M = F_b S
 - V = 0.66 F, A
- 3. Use maximum forces to find loads
 - · Back calculate a load from forces
 - Assume moment controls
- Check Shear
 - · Use load found is step 3 to check shear stress.
 - If it fails (fv > F'v), then find load based on shear.
- 5. Check deflection
- Check bearing

			X-)	(AXIS	Y-Y	AXIS
	Standard	Area		Moment		Momen
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	Α	S _{xx}	l _{xx}	Syy	l _{yy}
	in. x in.	in. ²	in. ³	in.4	in. ³	in.⁴
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec		NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

from NDS 2012

Given: member size, material and span.

load duration = 10 min. Req'd: Max. Safe Load (capacity)

- 1. Assume f = F'
 - Maximum actual = allowable stress

GIVEN: SPAN = 6 Pet SECTION = Z×4 (1.5×3.5) Fb = 875psi Fv = 135psi REQ'D: MAXIMUM LOAD P

Table 4A (Cont.)

Reference Design Values for Visual (2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see duration and dry service conditions. See NDS adjustment factors.)

USE WITH TABLE 4A AC

		Design va					
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain			
		F _b	Ft	F _v			
SPRUCE-PINE-FIR							
Select Structural		1,250	700	135			
No. 1/ No. 2	2" & wider	875	450	135			
No. 3	C 201 20 100 100 100 100 100 100 100 100	500	250	135			
Stud	2" & wider	675	350	135			
Construction	CONTRACTOR OF THE PARTY OF THE	1,000	500	135			
Standard	2" - 4" wide	550	275	135			
Utility		275	125	135			

University of Michigan, TCAUP

Arch 544

Slide 45 of 88

Analysis Example

Determine allowable stresses – NDS Supplement

· Adjustment Factors

Determine factors:

CD = ?

CM = 1

Ct = 1

CL = 1

CF = ?

Cfu = 1 Ci = 1

Cr = 1

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

	ASD only		ASD and LRFD							LRFI only)			
	Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b = F_b$ x	CD	См	C_{t}	C_{L}	C_{F}	C_{fu}	C_{i}	C_{r}	-	-	-	K _F	фь	λ
$F_{v} = F_{v}$ x	C _D	См	C_{t}	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

		Size Factors,	C_F
		F	b
		Thickness	(breadth)
Grades	Width (depth)	2" & 3"	4"
	2", 3", & 4"	1.5	1.5
Select	5"	1.4	1.4
Structural,	6"	1.3	1.3
No.1 & Btr,	8"	1.2	1.3
No.1, No.2,	10"	1.1	1.2
No.3	12"	1.0	1.1
	14" & wider	0.9	1.0
	2", 3", & 4"	1.1	1.1
Stud	5" & 6"	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated desig
Construction,	2", 3", & 4"	1.0	1.0
Standard			
Utility	4"	1.0	1.0
	2" & 3"	0.4	_

2. Solve stress equation for moment

• M = F'_b S_x (i.e. moment capacity)

Table 2.3.2 Frequently Used Load Duration Factors, C_p¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

$$f_b = F_b' = 875(1.6)(1.5)$$

 $F_b' = 2100 \text{ ps}$

$$M_{\xi} = F_{b}' S_{x} = 2100(3.063)$$

= 6432.3"-*
= 536'-*

University of Michigan, TCAUP

Arch 544

Slide 47 of 88

Analysis Example (cont.)

3. Use maximum forces to find loads

 Back calculate a maximum load from moment capacity

$$M_4 = PL/4$$
 $P = M_4 4/L$
 $P = 536 (4)/6$
 $P = 357*$

4. Check shear

- Check shear for load capacity from step 3.
- Use P from moment to find Vmax
- Check that fv < Fv'
- 4. Check deflection (serviceability)
- 5. Check bearing (serviceability)

$$F_{V}^{1} = F_{V}(C_{D}) = 135_{PS1}(1.6) = 216_{PS1}$$

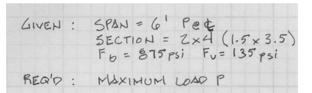
$$V_{\text{max}} = \frac{P}{2} = \frac{357}{2} = 178.6^{*}$$

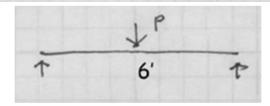
 $f_{V} = \frac{3}{2} \frac{V}{A} = 1.5 \frac{178.6}{5.25 \text{ m}^{2}} = 51 \text{ ps}$

51 < 216 : OK

Question ...

For the No.2 S-P-F 2x4 section determine the safe center point load capacity with the member flatwise.


$$\begin{aligned} \textbf{F}_{\text{b}}\text{'} &= \textbf{F}_{\text{b}} \ (\textbf{C}_{\text{D}} \ \textbf{C}_{\text{M}} \ \textbf{C}_{\text{t}} \ \textbf{C}_{\text{L}} \ \textbf{C}_{\text{F}} \ \textbf{C}_{\text{fu}} \ \textbf{C}_{\text{i}} \ \textbf{C}_{\text{r}} \) \\ \textbf{C}_{\text{D}} &= 1.6 \\ \textbf{C}_{\text{F}} &= 1.5 \\ \textbf{C}_{\text{fu}} &= 1.1 \end{aligned}$$


$$F_v' = F_v (C_D C_M C_t C_i)$$

$$M = F'_b S_y P = M 4 / L$$

 $S_v = 1.313 in^3$

Check that f_v < F'_v

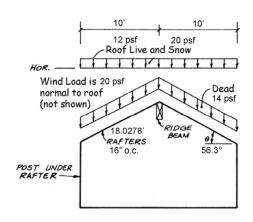
University of Michigan, TCAUP

Flat Use Factor, C_{fu}

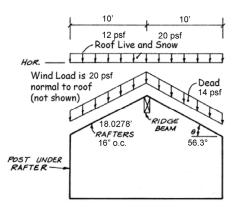
Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, Cfu

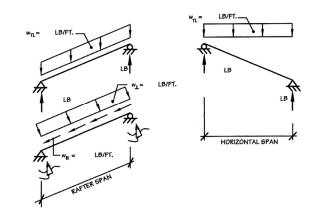
Width	Thickness (breadth)			
(depth)	2" & 3" 4"			
2" & 3"	1.0	_		
4"	1.1	1.0		
5"	1.1	1.05		
6"	1.15	1.05		
8"	1.15	1.05		
10" & wider	1.2	1.1		


Arch 544 Slide 49 of 88

Analysis Example 3

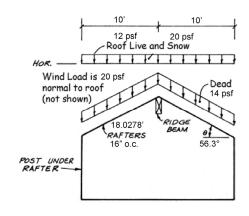

3. Sawn Lumber - Rafters

Analyze the simple roof rafter system to determine safety in flexure. Determine the controlling load combination (see ASCE-7 2.4). Consider all load cases which include D, Lr, S and W together with the corresponding CD. Assume adequate bracing to give CL=1. Also CM, Ct, Cfu and Ci should be taken as 1.


DATASET: 1 -2-	
Wood Species	Western Cedars
Wood Grade	No.2
Rafter Size	2x10
Rafter O.C. Spacing	16 IN
Rafter Span	10 FT
Roof Slope	18 IN/FT
Dead Load (includes selfweight)	14 PSF
Roof Live Load	12 PSF
Snow Load	20 PSF
Wind Load (+ is pressure inward)	20 PSF

D:
$$14 \text{ PSF} \frac{16}{12} = 16.67 \text{ PLF}$$
 $18.67 \frac{18.03}{10} = 33.45 \text{ PLF} (\text{PROJECTED})$
L: $12 \text{ PSF} \frac{16}{12} = 16 \text{ PLF} (\text{PROJECTED})$
S: $20 \text{ PSF} \frac{16}{12} = 26.47 \text{ PLF} (\text{PROJECTED})$
W: $20 \text{ PSF} \frac{16}{12} = 26.67 \text{ PLF} (\text{NORMAL})$

D:
$$14PSF \frac{16}{12} = 16.67 PLF$$
 $18.67 \frac{18.03}{10} = 33.65 PLF (PROJECTED)$


University of Michigan, TCAUP

Arch 544 Slide 51 of 88

Analysis Example 3

D:
$$14 psf \frac{16}{12} = 16.67 ptf$$
 $18.67 \frac{18.03}{10} = 33.65 ptf (projected)$

MOMENTS:
$$\frac{\omega l^2}{8}$$
D: 33.65 (10)² = 420.6 FT-LBS
L: $\frac{16(10)^2}{8}$ = 200 FT-LBS

ASCE 7 2.4 ASD Load Combinations

1.
$$D$$

2. D+L

3. $D+(L_r \text{ or } S \text{ or } R)$

4. $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$

5. D + (0.6W)

6. $D + 0.75L + 0.75(0.6W) + 0.75(L_r \text{ or } S \text{ or } R)$

7. 0.6D + 0.6W

MOMENTS:
$$\frac{\omega l^2}{8}$$

D: $\frac{33.65(10)^2}{8} = 420.6$ FT-LBS

L: $\frac{16(10)^2}{8} = 200$ FT-LBS

S: $\frac{26.67(10)^2}{8} = 333.3$ FT-LBS

W: $\frac{26.67(18.0278)^2}{8} = 1083.5$ FT-LBS

To find the controlling case:

Sum moments / C_D the largest controls

University of Michigan, TCAUP

LOAD CASES:

$$D: \frac{420.6}{0.9} = 467.4$$

$$\frac{1.6}{0}$$

$$0+.75(.6w)+.75L_{r}:\frac{420.6+.75(.6(083.5))+.75(200)}{1.6}=661.3$$

of Michigan, TCAUP

Slide 53 of 88

Analysis Example 3

Other stress adjustment factors:

for 16" o.c. $C_r = 1.15$

Repetitive Member Factor, C_r

Arch 544

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

C_F Size factor

2 x 10 use 1.1

		Size Factors,	C_F			
		F	b	F_t	F _c	
		Thickness	(breadth)			
Grades	Width (depth)	2" & 3"	4"			
	2", 3", & 4"	1.5	1.5	1.5	1.15	
Select	5"	1.4	1.4	1.4	1.1	
Structural,	6"	1.3	1.3	1.3	1.1	
No.1 & Btr,	8"	1.2	1.3	1.2	1.05	
No.1, No.2,	10"	1.1	1.2	1.1	1.0	
No.3	12"	1.0	1.1	1.0	1.0	
	14" & wider	0.9	1.0	0.9	0.9	
	2", 3", & 4"	1.1	1.1	1.1	1.05	
Stud	5" & 6"	1.0	1.0	1.0	1.0	
	8" & wider	Use No.3 Grade	tabulated design	values and size factors		
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0	
Utility	4"	1.0	1.0	1.0	1.0	
	2" & 3"	0.4	_	0.4	0.6	

Tabulated allowable stress:

 $F_{\rm b} = 700 \; {\rm psi}$

USE WITH TABLE 4A ADJUSTMENT FACTORS

		Design values in pounds per square inch (psi)								
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity⁴	
		F _b	F,	F _v	F _{c⊥}	F _c	E	E _{min}	G	
WESTERN CEDARS										
Select Structural		1,000	600	155	425	1,000	1,100,000	400,000		
No. 1	011 0	725	425	155	425	825	1,000,000	370,000	1	
No. 2	2" & wider	700	425	155	425	650	1,000,000	370,000		
No. 3		400	250	155	425	375	900,000	330,000	0.00	
Stud	2" & wider	550	325	155	425	400	900,000	330,000	0.36	
Construction	Aller Otto Congress 200 in	800	475	155	425	850	900,000	330,000		
Standard	2" - 4" wide	450	275	155	425	650	800,000	290,000		
Utility		225	125	155	425	425	800,000	290,000		

University of Michigan, TCAUP

Arch 544

Slide 55 of 88

Analysis Example 3

allowable stress:

 $F_{\rm b} = 700 \; {\rm psi}$

 $F'_b = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$ $F'_b = 700 \text{ psi } (1.6 \ 1.1 \ 1.15) = 1416.8 \text{ psi}$

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		SD nly		ASD and LRFD							LRFD only				
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	х	CD	См	Ct	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_{\mathbf{v}}' = F_{\mathbf{v}}$	хС	CD	См	C_{t}	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

actual stress:

 $f_b = M / S_x$

 $f_b = 1158.15 \text{ ft.-lbs.} (12) / 21.39 \text{ in}^3$

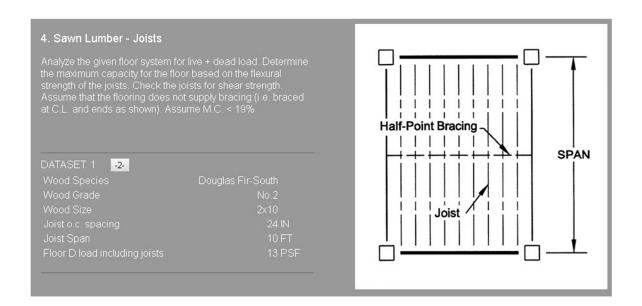
 $f_b = 649.7 \text{ psi}$

 $F'_b = 1416.8 \text{ psi} > 649 \text{ psi} \dots \text{OK}$

try 24" o.c. ?

check shear

University of Michigan, TCAUP


Arch 544

Slide 57 of 88

Analysis Example

Given: loading, member size, material and span.

Req'd: LL capacity in psf

Find Fb, Fv and Emin for Douglas Fir – South No2.

• (from NDS Supplement)

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

			Design values in pounds per square inch (psi)							
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F,	F₀⊥	F.	E	Emin	G	
DOUGLAS FIR-SOUTH										
Select Structural		1,350	900	180	520	1,600	1,400,000	510,000		
No. 1	2" & wider	925	600	180	520	1,450	1,300,000	470,000	l	
No. 2	2 & widei	850	525	180	520	1,350	1,200,000	440,000	l	
No. 3		500	300	180	520	775	1,100,000	400,000	0.40	MANAGOA
Stud	2" & wider	675	425	180	520	850	1,100,000	400,000	0.46	WWPA
Construction		975	600	180	520	1,650	1,200,000	440,000	1	
Standard	2" - 4" wide	550	350	180	520	1,400	1,100,000	400,000	l	
Utility	0	250	150	180	520	900	1,000,000	370,000		

University of Michigan, TCAUP Arch 544 Slide 59 of 88

Analysis Example

Section Properties:

2 x 10 (3.5" x 11.25")

Area = 13.88 in^2

 $Sx = 21.39 \text{ in}^3$

	1	l .	X-/	CAXIS	Y-1	CIXA
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	Α	S _{xx}	l _{xx}	S _{yy}	l _{yy}
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
		19.88	43.89	290.8	4.969	3.727
		8.75	5.10	8.932	3.646	4.557

11.25 8.44

4.688

5.729 7.552

9.635

11.72 13.80

11.23 14.80

22.97

5.859

7.161 9.440

12.04

14.65 17.25

19.65 25.90

33.05

40.20

18.98

34.66 79.39

164.9

296.6

48.53 111.1

230.8

415.3

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		_										_			: 1	13.75	12.60
	ASE	•			4	SD an	4 I D	FD					LRF	D		18.13	21.90
	only	,			A	oD an	u LK	I D					only			23.13 28.13	35.65 52.73
																33.13	73.15
								tor	, i	10.		tor				38.13	96.90
	Load Duration Factor	tor	tor	Factor		l .	L	Factor	Column Stability Factor	Buckling Stiffness Factor	Factor	Conversion Factor	10	tor	†	12.25	7.15
	- E	Wet Service Factor	Temperature Factor	Y F	tor	Flat Use Factor	Incising Factor	Repetitive Member	ty I	8	Fa	ion	Resistance Factor	Time Effect Factor		15.75	11.81
	igi	ig.	l are	Stability	Size Factor	- S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	le m	Pili	l ğ	Area	ers	e l	ect		19.25	17.65
) ji	je.	era	Stak	ize	l ž	is:	e W	Sta	St	l g	,uo	stan	田田		25.38	30.66
	l p	i si	l g	Beam	S	Flat	Inc	iţ	E	iii	Bearing	at	88.	in e		32.38	49.91
	3	≥	l i	l g				<u>8</u>	हि	l ck	m m	Format	24	F		39.38	73.83
								2	~	m		ĬĬ.				46.38	102.41
															, т	53.38	135.66
$F_b' = F_b$	C _D	См	C_{t}	C_{L}	C_{F}	$C_{\text{\rm fu}}$	C_{i}	C_{r}	-	-	-	K_{F}	ϕ_{b}	λ			
$F_{\mathbf{v}}' = F_{\mathbf{v}}$	C _D	См	C_{t}	-	-	-	C_{i}	-	-	-	-	K _F	$\varphi_{\rm v}$	λ			

University of Michigan, TCAUP Arch 544 Slide 60 of 88

2x10 Doug Fir S No2 M.C.<19%

Determine Adjustment Factors

 $C_r = 1.15$

 $C_F = 1.1$

 $C_{M} = 1.0$

Table 4A Adjustment Factors

Repetitive Member Factor, C,
Bending design values, F_b, for dimension lumber 2"
to 4" thick shall be multiplied by the repetitive member
factor, C, = 1.15, when such members are used as joists,
truss chords, rafters, studs, planks, decking, or similar
members which are in contact or spaced not more than 24"
on center, are not less than 3 in number and are joined by
floor, roof, or other load distributing elements adequate to
support the design load. support the design load.

Wet Service Factor, C_M
When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

F _b	F_t	F_{ν}	$F_{c\perp}$	F_c	E and E _{min}
0.85*	1.0	0.97	0.67	0.8**	0.9

^{*} when $(F_s)(C_F) \le 1,150$ psi, $C_M = 1.0$ ** when $(F_c)(C_F) \le 750$ psi, $C_M = 1.0$

Flat Use Factor, C_{ta}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be multiplied by the following flat use factors:

	Title obe Factors, on					
dth	Thickness (I	oreadth)				
oth)	2" & 3"	4"				
k 3"	1.0	_				
	1.1					

width	Thickness (breadtn)	
(depth)	2" & 3"	4"	
2" & 3"	1.0	_	
4"	1.1	1.0	
5"	1.1	1.05	
6"	1.15	1.05	
8"	1.15	1.05	
10" & wider	1.2	1.1	

NOTE
To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Utility grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

be multiplied by the following size factors: Size Factors, C_F

 F,
Thickness (

		1.9		17	re
		Thickness (breadth)	a a	
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade to	abulated design v	alues and size facto	rs
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
10.000 E.O	2" & 3"	0.4	_	0.4	0.6

Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer author AMERICAN WOOD COUNCIL

University of Michigan, TCAUP

Arch 544

Slide 61 of 88

C_I Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_L is calculated using equation 3.3-6 The maximum allowable slenderness, $R_{\rm B}$ is 50

Table 3.3.3	Effective Length, $\ell_{ m e}$, for Bending Members
-------------	---

Cantilever ¹	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =1.33 $\ell_{\rm u}$	95a x	$\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3 {\rm d}$
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$	7 7	$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$	Sprace as	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$	2	ℓ_e =1.37 ℓ_u + 3d
Concentrated load at center with lateral support at center	, a - E	$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$	The same
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	× «
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points	35	$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points	No.	$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	Estate de la Contraction de la
Equal end moments		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	

^{1.} For single span or cantilever bending members with loading conditions not specified in Table 3.3.3: $\ell_e = 2.06 \; \ell_u \qquad \text{when } \ell_v d < 7$ $\ell_e = 1.63 \; \ell_u + 3d \; \text{when } 7 \le \ell_v d \le 14.3$ $\ell_e = 1.84 \; \ell_u \; \; \text{when } \ell_v d > 14.3$ 2. Multiple span applications shall be based on table values or engineering analysis.

$$\ell_{\rm u} = 5' = 60''$$

d = 9.25"

$$\ell_{\rm u}$$
 / d = 6.48 < 7

$$\ell_{\rm e}$$
 = 2.06 $\ell_{\rm u}$ = 123.6"

C_I Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_L is calculated using equation 3.3-6 The maximum allowable slenderness, R_B is 50

3.3.3.6 The slenderness ratio, $R_{\rm B}$, for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{b^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, $R_{\rm B},$ shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + \left(F_{bE}/F_{b}^{*}\right)}{1.9} - \sqrt{\left[\frac{1 + \left(F_{bE}/F_{b}^{*}\right)}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

where:

 F_b^* = reference bending design value multiplied by all applicable adjustment factors except C_{fu} , C_V (when $C_V \le 1.0$), and C_L (see 2.3), psi

$$F_{bE} = \frac{1.20 \, E_{min}'}{R_B^2}$$

University of Michigan, TCAUP

$$C_{L} = \frac{1 + 0.9664}{1.9} - \sqrt{\frac{1 + 0.9664}{1.9}} - \frac{0.9664}{0.95}$$

$$C_{L} = 1.0349 - \sqrt{1.0349^2 - 1.0172}$$

$$C_{L} = 1.0349 - 0.23198 = 0.8029$$

Arch 544 Slide 63 of 88

Analysis Example

Determine the Factored Allowable Stress

F'b = Fb (adjustment factors)

$$C_D = 1.0$$

$$C_r = 1.15$$

$$C_{\rm F} = 1.1$$

$$C_{\rm M} = 1.0$$

$$C_1 = 0.8029$$

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only		ASD and LRFD							LRFD only				
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	C_D	См	Ct	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_{\mathbf{v}} = F_{\mathbf{v}}$	х	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

 $F'b = 850(1.15 \times 1.1 \times 0.8029) = 863.3 \text{ psi}$

$$F'v = 180(C_D C_M C_t C_i) = 180 psi$$

Allowable Stresses

F'b = 863.3 psiF'v = 180 psi

			X->	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	A	S _{xx}	l _{xx}	Syy	l _{yy}
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimensio	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	3.5)
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.66	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Determine LL capacity M = F'b Sx

$$M = \frac{\omega l^2}{8} = 1538.8 = \frac{\omega (10)^2}{8}$$

$$\omega = 123.11 \text{ PLF}$$

$$\omega_{\text{ToTAL}} = 123.11 \text{ PLF}$$
 $\omega_{\text{LL}} = 123.11 - 26 = 97.11 \text{ PLF}$
 $\omega_{\text{LL}} = 97.11 \frac{12}{24} = 42.55 \text{ PSF}$

ACTUAL V max

$$V = \frac{\omega P}{2} = \frac{(26 + 97.11) 10}{2} = 615.5 LB$$

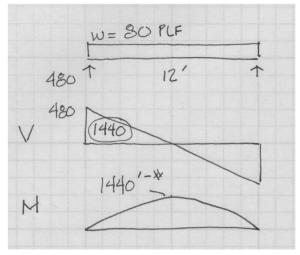
$$f_{v} = \frac{3}{2} \frac{V}{A} = 1.5 \frac{615.5}{13.88} = 66.5 pol < 180$$

Arch 544 Slide 65 of 88

Design Procedure

Given: load, wood, span Req'd: <u>member size</u>

- 1. Find Max Shear & Moment
 - Simple case equations
 - · Complex case diagrams
- 2. Estimate allowable stresses
- 3. Solve S=M/F_b'
- 4. Choose a section from Table 1B
 - Revise DL and F_b'
- 5. Check shear stress
 - First for V max (easier)
 - If that fails try V at d distance from support.
 - If the section still fails, choose a new section with $A=1.5V/F_{\nu}$ '
- 6. Check deflection
- 7. Check bearing


			X-)	(AXIS	Y-1	AXIS
	Standard	Area		Moment		Momen
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	b x d	Α	S _{xx}	l _{xx}	S _{yy}	l _{yy}
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N		2) and Dec		NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

Design Example (joist)

Given: total load, wood, span

Req'd: member size

- GIVEN: F'S = 1000 PSI F'V = 100 PSI SPAN = 12' DL+LL = 80 PLF RER'D: SECTION SIZE
- 1. Find Max Shear & Moment
 - Simple case equations
 - · Complex case diagrams

University of Michigan, TCAUP

Arch 544

Design Example

- 2. Estimate allowable stresses (given in this example) $F'_{b} = 1000 \text{ psi}$ $F'_{v} = 100 \text{ psi}$
- 3. Solve $S=M/F_b$

F6=	M/Sx Sx= M/F'b	
Sx	$=\frac{1440(12)}{1000}=17.28 \text{ m}^3$	

- 4. Choose a section from S table
 - Revise DL and F_b'

$$2 \times 10$$
 $5x = 21.39 > 17.28$
 $A = 13.88 i^{2}$

			X-)	(AXIS	Y-Y AXIS		
	Standard	Area		Moment		Moment	
Nominal	Dressed	of	Section	of	Section	of	
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia	
bxd	b x d	Α	S _{xx}	I _{xx}	Syy	l _{vv}	
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4	
Boards ¹							
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	
	n Lumber (see N				NDS 4.1.3		
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557	
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859	
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161	
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440	
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04	
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65	
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25	
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86	
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51	
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08	
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65	
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90	
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20	
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	

Slide 67 of 88

$$2 \times 10$$
 $5x = 21.39 > 17.28$

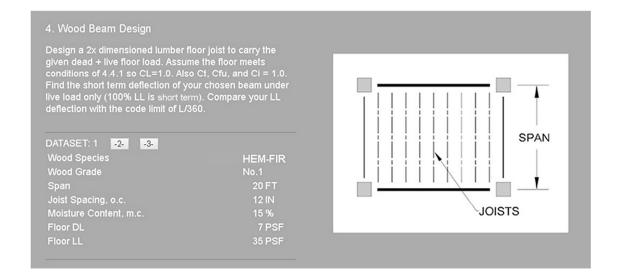
$$A = 13.88 i2$$

5. Check shear stress

- First for V max (easier)
- If that fails try V at d distance (remove load d from support)
- If the section still fails, choose a new section with A=1.5V/F_v'

$$f_{V} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (480^{*})}{13.88 i k^{2}} = 51.87$$

- 6. Check deflection
- 7. Check bearing


University of Michigan, TCAUP

Arch 544

Slide 69 of 88

Design Example (joist)

Given: load, wood, span Req'd: <u>member size</u>

Determine allowable stresses

F_b and F_v (from NDS)

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)1,2,3

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F,	F,	F _{o⊥}	F _c	Е	E _{min}	G	
HEM-FIR										
Select Structural No. 1 & Btr No. 1 No. 2 No. 3 Storage of the structural Construction	2" & wider 2" & wider	1,400 1,100 975 850 500 675 975	925 725 625 525 300 400	150 150 150 150 150 150 150	405 405 405 405 405 405 405	1,500 1,350 1,350 1,300 725 800 1,550	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000 1,200,000 1,300,000	580,000 550,000 550,000 470,000 440,000 440,000 470,000	0.43	WCLIB WWPA
Standard Utility	2" - 4" wide	550 250	325 150	150 150	405 405 405	1,300 850	1,200,000	440,000 400,000		

University of Michigan, TCAUP Arch 544 Slide 71 of 88

Design Example

Determine allowable stresses

			X-X AXIS		Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
b x d	bxd	A	S _{xx}	I _{xx} S _{yy}		lyy
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
Dimension	n Lumber (see N	DS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49
Lle	iversity of Mich	igan TC	ALID.			

University of Michigan, TCAUP

Table 4A Adjustment Factors

Repetitive Member Factor, C,
Bending design values, F_b, for dimension lumber 2° to 4° thick shall be multiplied by the repetitive member dator, C₂=115 when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24* on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, C_M
When dimension lumber is used where moisture conwhen dimension lumber is used where moisture con-tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service	Factors,	C _M	
F _b	Ft	F_{ν}	$F_{c\perp}$	Fc	E and E _{min}
054	10	0.07	0.67	0.044	0.0

^{*} when $(F_c)(C_F) \le 1,150$ psi, $C_M = 1.0$ ** when $(F_c)(C_F) \le 750$ psi, $C_M = 1.0$

10" & wider

Flat Use Factor, C_{fo}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{lo} shall also be multiplied by the following flat use factors:

Fla	Flat Use Factors, C _{ru}							
Width	Thickness (breadth)							
(depth)	2" & 3"	4"						
2" & 3"	1.0							
4"	1.1	1.0						
5"	1.1	1.05						
6"	1.15	1.05						
8"	1.15	1.05						

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Utility grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Size Factor, $C_{\rm F}$ Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

		Fb		F _t	Fc
		Thickness (l	oreadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select Structural,	5"	1.4	1.4	1.4	1.1
	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade ta	bulated design v	alues and size facto	rs
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
CONCRETE VI	2" & 3"	0.4	250	0.4	0.6

Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No r

Arch 544

Determine allowable stresses.

Since the size is not known you have to skip C_F (or make a guess).

$$F_{b}^{1} = F_{b}(FACTORS)$$

= 975 (1.0 × 1.15 × 1.0 × CF?) \approx 1121 psi
Co Cr CM

$$F_{v}' = F_{v}(C_{D}, C_{M}, C_{e}, C_{i})$$

= 150(1.0 × 1.0 × 1.0 × 1.0) = 150 psi

University of Michigan, TCAUP

Arch 544

Slide 73 of 88

Design Example

Determine moment from loading.

First find the uniform beam load, w, from the floor loading.

$$\omega = (PSF) \frac{O.C.}{12} = PLF$$
 $(7+35) \frac{12}{12} = 42 PLF$

With the beam loading, calculate the maximum moment.

$$M = \frac{\omega l^2}{8} = \frac{42(20')^2}{8} = 2100^{1-4}$$

Estimate the Required Section Modulus.

$$5x = \frac{H}{F_b^1} = \frac{2100(12)}{1121} = 22.47 \text{ m}^3$$

Compare this required Sx to the actual Sx of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

University of Michigan, TCAUP

Arch 544

Slide 75 of 88

Design Example

Choose a section and test it (by analysis with all factors including C_F)

			X-X AXIS		Y-1	AXIS
	Standard	Area		Moment		Moment
Nominal	Dressed	of	Section	of	Section	of
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia
bxd	bxd	A	S _{xx}	l _{xx}	S _{yy}	l _{yy}
	in. x in.	in. ²	in.3	in.4	in. ³	in.4
Boards ¹						
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396
	n Lumber (see N				NDS 4.1.3	
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49

TRY 2×10
$$C_F = 1.1$$
 $F_b^1 = 975(1.15 1.1) = 1233.3 \text{ psi}$
 $f_b = \frac{11}{5} \times \frac{2100(12)}{21.39} = 1178 \text{ psi} < 1233 \text{ psi}$
 $f_V = \frac{3}{2} \frac{V}{A} = \frac{1.5(420)}{13.88} = 45.39 \text{ psi} < 150 \text{ psi}$
 V_{OK}
 $V_{OK} = \frac{1}{2} \times \frac{1}$

University of Michigan, TCAUP

Arch 544

Slide 76 of 88

Check Deflection

In this case LL only against IBC code limit of L/360 For short term load there is no creep factor Kcr

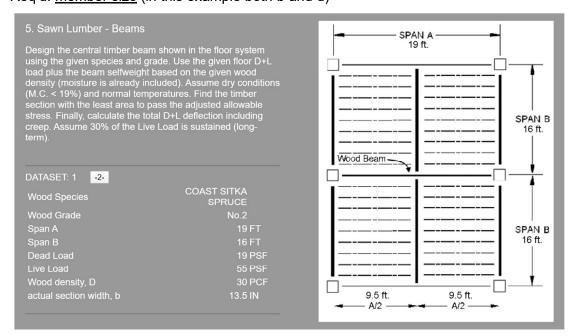
TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

CONSTRUCTION	L	S or W f	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	_	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	_	//360 //240 //120	
Interior partitions: b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120		=
Farm buildings	_		//180
Greenhouses	_	-	//120

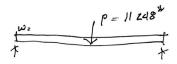
 $\Delta_{LL} = \frac{5\omega P^{4}}{384 \, \text{EL}} = \frac{5(35)(20)^{4}(1728)}{384 \, \text{(1500000)}(98.93)} = 0.849''$ $\Delta_{LIMIT} \frac{L}{360} = \frac{20'(12)}{360} = 0.667''$ 0.849 > 0.667 : FAIL5

International Building Code (IBC)

University of Michigan, TCAUP


Arch 544

Slide 77 of 88


Timber Beam Design

Given: load, wood, span

Reg'd: member size (in this example both b and d)

Find applied load and force

COAST STRA SPRUCE.

HOZ

DEHSITY 30 PCF

M.C., 15%

IDL 19 PSF

LU 55-PSF

$$M_{p} = \frac{PQ}{4} = \frac{11248(19)}{4} = 53428^{-4}$$
 $M_{w} = \frac{w^{2}}{8} = \frac{11248(19)}{4} = \frac{11248(19)}{4} = \frac{11248(19)}{4} = \frac{11248(19)}{8} = \frac{11248(19$

SPAN A
19 ft.

SPAN B
16 ft.

9.5 ft.

9.5 ft.

9.5 ft.

4/2

University of Michigan, TCAUP

Arch 544

Slide 79 of 88

Timber Beam Design

Find allowable stress

 $F_b = 625 \text{ psi}$ $F_V = 115 \text{ Psi}$

E = 1200000 PSI

Emin 440000 PS1

From NDS Supplement: Coast Sitka Spruce No2

Table 4D Reference Design Values for Visually Graded Timbers (5" x 5" and larger)^{1,3}

(Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4D ADJUSTMENT FACTORS

		Design values in pounds per square inch (psi)								7
Species and commercial Grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	Ft	F _v	F _{c⊥}	F _c	E	E _{min}	G	
COAST SITKA SPRUCE						- 95				
Select Structural	Booms and	1,150	675	115	455	775	1,500,000	550,000		
No.1	Beams and Stringers	950	475	115	455	650	1,500,000	550,000		
No.2		625	325	115	455	425	1,200,000	440,000	0.43	NLGA
Select Structural	Posts and Timbers	1,100	725	115	455	825	1,500,000	550,000	0.43	NLGA
No.1		875	575	115	455	725	1,500,000	550,000		
No.2	rinbers	525	350	115	455	500	1,200,000	440,000		

Trial 1: choose Sx and size

Sx = M / Fb

TRY |

$$F_b \approx F_b = 625 \, f^{51}$$
 $S_x = \frac{M}{F} = \frac{53428 \, (12)}{625} = 1025 \, \text{m}^3$
 $\frac{12 \times 24}{S_x} = \frac{1058 \, \text{m}^2}{4} = 270 \, \text{m}^2$

Table 1B Section Properties of Standard Dressed (\$4\$) Sawn Lumber (Cont.)

			X-)	(AXIS	Y-Y	AXIS						
	Standard	Area		Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	t (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pied	e when d	ensity of	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
bxd	bxd	Α	S _{xx}	I _{xx}	Śyy	lyy	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4						
Beams &	Stringers (see N	DS 4.1.3.3	and NDS	4.1.5.3)					,			
10 x 14	9-1/2 x 13-1/2	128.3	288.6	1948	203.1	964.5	22.27	26.72	31.17	35.63	40.08	44.53
10 x 16	9-1/2 x 15-1/2	147.3	380.4	2948	233.1	1107	25.56	30.68	35.79	40.90	46.02	51.13
10 x 18	9-1/2 x 17-1/2	166.3	484.9	4243	263.2	1250	28.86	34.64	40.41	46.18	51.95	57.73
10 x 20	9-1/2 x 19-1/2	185.3	602.1	5870	293.3	1393	32.16	38.59	45.03	51.46	57.89	64.32
10 x 22	9-1/2 x 21-1/2	204.3	731.9	7868	323.4	1536	35.46	42.55	49.64	56.74	63.83	70.92
10 x 24	9-1/2 x 23-1/2	223.3	874.4	10274	353.5	1679	38.76	46.51	54.26	62.01	69.77	77.52
12 x 16	11-1/2 x 15-1/2	178.3	460.5	3569	341.6	1964	30.95	37.14	43.32	49.51	55.70	61.89
12 x 18	11-1/2 x 17-1/2	201.3	587.0	5136	385.7	2218	34.94	41.93	48.91	55.90	62.89	69.88
12 x 20	11-1/2 x 19-1/2	224.3	728.8	7106	429.8	2471	38.93	46.72	54.51	62.29	70.08	77.86
12 x 22	11-1/2 x 21-1/2	247.3	886.0	9524	473.9	2725	42.93	51.51	60.10	68.68	77.27	85.85
12 x 24	11-1/2 x 23-1/2	270.3	1058	12437	518.0	2978	46.92	56.30	65.69	75.07	84.45	93.84
14 x 18	13-1/2 x 17-1/2	236.3	689.1	6029	531.6	3588	41.02	49.22	57.42	65.63	73.83	82.03
14 x 20	13-1/2 x 19-1/2	263.3	855.6	8342	592.3	3998	45.70	54.84	63.98	73.13	82.27	91.41
14 x 22	13-1/2 x 21-1/2	290.3	1040	11181	653.1	4408	50.39	60.47	70.55	80.63	90.70	100.8
14 x 24	13-1/2 x 23-1/2	317.3	1243	14600	713.8	4818	55.08	66.09	77.11	88.13	99.14	110.2
	T							00.0=	=0.10	00.00	01.15	1010

University of Michigan, TCAUP

Arch 544

Slide 81 of 88

Timber Beam Design

Trial 1: 12 x 24 m.c. < 19% not flat use

Table 4D Adjustment Factors

Size Factor, C_F

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Size Factors, C_F

Depth	F_b	F _t	F _c
d > 12"	$(12/d)^{1/9}$	1.0	1.0
$d \le 12$ "	1.0	1.0	1.0

Flat Use Factor, C_{fu}

When members classified as Beams and Stringers* in Table 4D are subjected to loads applied to the wide face, tabulated design values shall be multiplied by the following flat use factors:

Flat Use Factor, Cfu

Grade	F_{b}	E and Emin	Other Properties
Select Structural	0.86	1.00	1.00
No.1	0.74	0.90	1.00
No.2	1.00	1.00	1.00

^{*&}quot;Beams and Stringers" are defined in NDS 4.1.3 (also see Table 1B).

Wet Service Factor, C_M

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

Wet Service Factors, C_M

F_{b}	\mathbf{F}_{t}	$F_{\rm v}$	$F_{\text{c}\perp}$	F_c	\boldsymbol{E} and \boldsymbol{E}_{min}
1.00	1.00	1.00	0.67	0.91	1.00

Adjustment Factors:

$$C_{l}$$

Table 3.3.3

"Concentrated load at center with lateral support at center" le = 1.11 lu

$$F_{bE} = \frac{1.2 \text{ Emm}}{R_B^2} = \frac{1.2(440000)}{4.74^2} = 23482 \text{ psi}$$

University of Michigan, TCAUP

Arch 544

Slide 83 of 88

Timber Beam Design

Trial 1: 12×24 $Sx = 1058 \text{ in}^3$ $A = 270 \text{ in}^2$

1159.4 > 1058 so 12 x 24 is too small

Trial 2: $Sx \text{ reg'd} = 1159 \text{ in}^3$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber (Cont.)

			X-)	(AXIS	Υ-1	AXIS						
	Standard	Area		Moment		Moment	Appro			ounds per		
Nominal	Dressed	of	Section	of	Section	of		of pied	e when d	ensity of v	vood equa	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia	_	_				
b x d	bxd	Α	S _{xx}	I _{xx}	Śyy	l _{yy}	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in. ²	in.3	in.4	in. ³	in.4						
Beams &	Stringers (see N	DS 4.1.3.3	and NDS	4.1.5.3)								
10 x 14	9-1/2 x 13-1/2	128.3	288.6	1948	203.1	964.5	22.27	26.72	31.17	35.63	40.08	44.53
10 x 16	9-1/2 x 15-1/2	147.3	380.4	2948	233.1	1107	25.56	30.68	35.79	40.90	46.02	51.13
10 x 18	9-1/2 x 17-1/2	166.3	484.9	4243	263.2	1250	28.86	34.64	40.41	46.18	51.95	57.73
10 x 20	9-1/2 x 19-1/2	185.3	602.1	5870	293.3	1393	32.16	38.59	45.03	51.46	57.89	64.32
10 x 22	9-1/2 x 21-1/2	204.3	731.9	7868	323.4	1536	35.46	42.55	49.64	56.74	63.83	70.92
10 x 24	9-1/2 x 23-1/2	223.3	874.4	10274	353.5	1679	38.76	46.51	54.26	62.01	69.77	77.52
12 x 16	11-1/2 x 15-1/2	178.3	460.5	3569	341.6	1964	30.95	37.14	43.32	49.51	55.70	61.89
12 x 18	11-1/2 x 17-1/2	201.3	587.0	5136	385.7	2218	34.94	41.93	48.91	55.90	62.89	69.88
12 x 20	11-1/2 x 19-1/2	224.3	728.8	7106	429.8	2471	38.93	46.72	54.51	62.29	70.08	77.86
12 x 22	11-1/2 x 21-1/2	247.3	886.0	9524	473.9	2725	42.93	51.51	60.10	68.68	77.27	85.85
12 x 24	11-1/2 x 23-1/2	270.3	1058	12437	518.0	2978	46.92	56.30	65.69	75.07	84.45	93.84
14 x 18	13-1/2 x 17-1/2	236.3	689.1	6029	531.6	3588	41.02	49.22	57.42	65.63	73.83	82.03
14 x 20	13-1/2 x 19-1/2	263.3	855.6	8342	592.3	3998	45.70	54.84	63.98	73.13	82.27	91.41
14 x 22	13-1/2 x 21-1/2	290.3	1040	11181	653.1	4408	50.39	60.47	70.55	80.63	90.70	100.8
14 x 24	13-1/2 x 23-1/2	317.3	1243	14600	713.8	4818	55.08	66.09	77.11	88.13	99.14	110.2
16 x 20	15-1/2 x 19-1/2	302.3	982.3	9578	780.8	6051	52.47	62.97	73.46	83.96	94.45	104.9
16 x 22	15-1/2 x 21-1/2	333.3	1194	12837	860.9	6672	57.86	69.43	81.00	92.57	104.1	115.7
16 x 24	15-1/2 x 23-1/2	364.3	1427	16763	941.0	7293	63.24	75.89	88.53	101.2	113.8	126.5

try
$$14 \times 24$$
 Sx = 1243 in^3

University of Michigan, TCAUP

Arch 544

Slide 85 of 88

Timber Beam Design

Trial 2: $14 \times 24 \quad (13 \frac{1}{2} \times 23 \frac{1}{2}) \quad Sx = 1243 \text{ in}^3$

revise adjustment factors:

$$C_F = \left(\frac{12}{23.5}\right)^{1/9} = 0.928$$

$$R_{b} = \sqrt{\frac{le \, d}{b^{2}}} = \sqrt{\frac{126.5 \, (23.5)}{13.5^{2}}} = 4.039$$

$$F_{b} = \frac{1.2 \, (440\,000)}{4.039^{2}} = 32359.6 \, \text{psi}$$

$$F^{*} = 625 \, (0.928) = 580.0 \, \text{psi}$$

$$F_{b} = \frac{32359.8}{580} = 55.79$$

Trial 2: $14 \times 24 = 317.3 \text{ in}^2$ Sx = 1243 in^3

check stresses:

w = 66.1 PLF

TRY Z

$$14 \times 24$$
 $A = 317.3 \text{ is}^2$ $S_x = 1242.6 \text{ is}^3$

CHECK SHELR:
$$V_{MAX} = \frac{\omega l}{z} + \frac{P}{z} = \frac{66.1(19)}{2} + \frac{11248}{2} = 6251.9 \text{ LB}$$

$$f_V = \frac{3}{2} \frac{V}{A} = \frac{3}{2} \frac{6251.9}{317.3} = 29.56 \text{ psi} \times 115 = F_V^{\dagger} \quad \checkmark$$

University of Michigan, TCAUP

Arch 544

Slide 87 of 88

Timber Beam Design

Trial 2: 14×24 $1x = 14600 \text{ in}^4$

check deflection: assume 30% of LL is sustained

see NDS 3.5 Kcr = 1.5 "seasoned lumber"

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}

CONSTRUCTION	L	S or Wf	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	-	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	=	//360 //240 //120	
Interior partitions: b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120	=	Ξ
Farm buildings	_		//180
Greenhouses	_	_	//120

$$L/240 = 19(12)/240 = 0.95$$
"

DEFLECTION

LONG - TERM:
$$\omega_{0}$$
 P_{0} 30% P_{0}

$$\Delta \omega_{0} = \frac{5\omega_{0} \int_{0}^{4}}{384 \, \text{EI}} = \frac{5 \left(66.1\right) \left(19\right)^{4} \left(1728\right)}{384 \left(1200000\right) \left(14600\right)} = 0.011''$$

$$\Delta P_{0} = \frac{P_{0} \int_{0}^{3}}{48 \, \text{EI}} = \frac{2888 \left(19\right)^{3} \left(1728\right)}{48 \left(1200000\right) \left(14600\right)} = 0.0407''$$

$$\Delta P_{0.302} = \frac{0.3 \left(P_{0.1}\right) \int_{0}^{3}}{48 \, \text{EI}} = \frac{0.3 \left(8360\right) \left(19\right)^{3} \left(1728\right)}{48 \left(1200000\right) \left(14600\right)} = 0.035''$$

$$\Delta L_{0} = 0.0847''$$

SHORT-TERM: 70% PL
$$\Delta P_{L10} = \frac{0.7 (P_L) l^3}{48 EI} = \frac{0.7 (6360)(19)^3 (1728)}{48 (1200 000)(14600)} = 0.0825''$$

TOTAL DEFLECTION:

$$\Delta_T = K_{cr} \Delta_{Lr} + \Delta_{ST}$$
= 1.5 (0.0867) + 0.0825 = 0.213"