Architecture 544 Wood Structures

Wood Beam Analysis and Design

- ASD approach
- NDS criteria
- Wood Beam Analysis
- Wood Beam Design

Allowable Stresses

From the NDS Supplement

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine-see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$$\qquad$ G	Grading Rules Agency
		Bending	Tension parallel to grain$\qquad$$\mathbf{F}_{\mathrm{t}}$	Shear parallel to grain$\qquad$$F_{v}$	CompressionperpendicularBeto grain$\mathrm{F}_{\mathrm{cl}} \mathrm{C}$	$\|$Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$\mathrm{E}_{\text {min }}{ }^{\circ}$		
HEM-FIR										
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 \& Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	$2^{\prime \prime}$ \& wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	$2^{\prime \prime}$ \& wider	675	400	150	405	800	1,200,000	440,000		
Construction		975	600	150	405	1,550	1,300,000	470,000		
Standard	2" - 4" wide	550	325	150	405	$1,300$	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

Allowable Stress Design by NDS

Flexure

Allowable Flexure Stress $\mathbf{F}_{\mathbf{b}}{ }^{\prime}$
E_{D} from NDS Supplement tables determined

$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$ (usage factors)
usage factors for flexure:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{L} Beam Ştability Factor
C_{F} Size Factor
C_{fu} Flat Use
C_{i} Incising Factor
C_{r} Repetitive Member Factor

Actual Flexure Stress f_{b}

$$
\begin{aligned}
& f_{b}=M c / I=M / S \\
& S=I / c=b d^{2} / 6
\end{aligned}
$$

Allowable Stress Design by NDS

 Shear

Allowable Shear Stress Fv’

F_{v} from tables determined by species and grade
$F_{v}{ }^{\prime}=F_{v}$ (usage factors)
usage factors for shear:
C_{D} Load Duration Factor
C_{M} Moisture Factor
C_{t} Temperature Factor
C_{i} Incising Factor

Actual Shear Stress fv

$\mathrm{f}_{\mathrm{v}}=\mathrm{VQ} / \mathrm{Ib}=1.5 \mathrm{~V} / \mathrm{A}$
Can use V at d from support as maximum

Shear at Supports

Allowable Stress Design by NDS Compression

Adjustment Factors
Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{array}{\|l} \text { ASD } \\ \text { only } \end{array}$	ASD and LRFD										$\begin{aligned} & \text { LRFD } \\ & \text { only } \end{aligned}$		
						$\begin{aligned} & \stackrel{\text { b }}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y}{2} \end{aligned}$								 ϕ	
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{t}	$\mathrm{C}_{\text {L }}$	C_{5}	$\mathrm{C}_{\text {fu }}$	C_{1}	$\begin{aligned} & 2013 T \\ & C_{r} \end{aligned}$	-	-	-	2.54	0.85	λ
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}$	x	C_{D}	C_{M}	Ct_{t}	-	C_{F}	-	C_{1}	-	-	-	-	2.70	0.80	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	-	C_{F}	-	C_{1}	-	C_{P}	-	-	2.40	0.90	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	-	Cb_{b}	1.67	0.90	-
$\mathrm{E}^{\prime}=\mathrm{E}$	x	-	C_{M}	C_{1}	-	-	-	C_{i}	-	-	-	-	-		-
$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	$\mathrm{C}_{\text {T }}$	-	1.76	0.85	-

Adjustment Factors

Allowable Flexure Stress F_{b} '

F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{D} Load Duration Factor

(1) Actual stress due to (DL) $\leq(0.9)$ (Design value)
(2) Actual stress due to (DL LLD)
(3) Actual stress due to (DL+WI).-
(4) Actual stress due to (DL+LL+SL) $\quad \leq(1.15)$ (Design value)
(5) Actual stress due to (DL+LL+WL $\leq(1.6)$ (Design value)
(6) Actual stress due to (DL+SL-WL) $\leq(1.6)$ (Design value)
(7) Actual stress due to (DL+LL+SL+WL $\leq(1.6)$ (Design value)

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$
F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$
Usage factors for flexure:
C_{t} Temperature Factor

Table 2.3.3 Temperature Factor, C_{t}

Reference Design Values	In-Service Moisture Conditions ${ }^{1}$	$\mathrm{C}_{\text {t }}$		
		$\mathrm{T} \leq 100^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}<\mathrm{T} \leq 125^{\circ} \mathrm{F}$	$125^{\circ} \mathrm{F}<\mathrm{T} \leq 150^{\circ} \mathrm{F}$
$\mathrm{F}_{\mathrm{t}}, \mathrm{E}_{6}, \mathrm{E}_{\text {min }}$	Wet or Dry	1.0	0.9 -	0.9
$\mathrm{F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{v}}, \mathrm{F}_{\mathrm{c}}$, and $\mathrm{F}_{\mathrm{c} \perp}$	Dry	1.0	$0.8{ }^{\text {• }}$	0.7
	Wet	1.0	0.7 '	0.5

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in $4.1 .4,5.1 .4,7.1 .4,8.1 .4,9.3 .3$, and 10.1.5 respectively.

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$
F_{b} from NDS tables
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$
Usage factors for flexure:
C_{M} Moisture Factor
C_{F} Size Factor

Wet Service Factor, \mathbf{C}_{M}

When dimension lumber is used where moisturecontent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_{m}

F_{b}	F_{1}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $E_{\text {min }}$
0.85*	1.0	0.97	0.67	0.8***	0.9
$\begin{aligned} & * \text { when }\left(\mathrm{E}_{\mathrm{E}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq \underline{1.150} \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0 \\ & * * \text { when }\left(\mathrm{E}_{\mathrm{J}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750 \text { psi, } \mathrm{C}_{\mathrm{M}}=1.0 \end{aligned}$					

$\xlongequal{\text { Size Factors. } \mathrm{C}_{5}}$

$\underline{\text { Size Factors, } \mathrm{C}_{5}}$					
Grades	Width (depth)	F_{b}		$\underline{F_{1}}$	$\underline{F_{c}}$
		Thickness (breadth)			
		(2) \& 3 "	4"		
$\begin{array}{\|l} \text { Select } \\ \text { Structural, } \\ \text { No.1 \& Btr, } \\ \text { No.1, No.2, } \\ \text { No.3 } \end{array}$	$\sqrt{2 \prime \prime}, 3^{\prime \prime}, 8$ (4i)	1.5	1.5	1.5	1.15
	5 "	1.4	1.4	1.4	1.1
	6 "	1.3	1.3	1.3	1.1
	8"	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12"]	1.0	1.1	1.0	1.0
	14"\& wider	0.9	1.0	0.9	0.9
Stud	2", 3", \& 4"	1.1	1.1	1.1	1.05
	$5{ }^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0
	$8^{\prime \prime}$ \& wider	Use No. 3 Grade tabulated design values and size factors			
- Construction, - Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4{ }^{\text {" }}$	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" \& 3"	0.4	-	0.4	0.6

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from NDS tables
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
C_{fu} Flat Use
C_{r} Repetitive Member Factor

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_{b}, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C_{fu}		
Width	Thickness (breadth)	
(depth)	$2^{\prime \prime} \& 3^{\prime \prime}$	$4^{\prime \prime}$
$2^{\prime \prime} \& 3^{\prime \prime}$	1.0	-
$4^{\prime \prime}$	1.1	1.0
$5^{\prime \prime}$	1.1	1.05
$6^{\prime \prime}$	1.15	1.05
$8^{\prime \prime}$	1.15.	1.05
$10^{\prime \prime} \&$ wider	1.2	1.1

Repetitive Member Factor, $\mathbf{C}_{\mathbf{r}}$

Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$
F_{b} from tables determined by species and grade
$F_{b}{ }^{\prime}=F_{b}\left(C_{D} C_{m} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$

Usage factors for flexure:
$\mathbf{C}_{\mathbf{i}}$ Incising Factor

Adjustment Factors

Allowable Flexure Stress $\mathrm{F}_{\mathrm{b}}{ }^{\text {' }}$

F_{b} from tables determined by species and grade
$F_{b}^{\prime}=F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right)$
Usage factors for flexure:
3.3.3.1 When the depth of a bending member does not exceed its breadth, $\mathrm{d} \leq \mathrm{b}$, no lateral support is required and $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with $4.41, C_{L}=1.0$.
3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $\mathrm{C}_{\mathrm{L}}=1.0$.
3.3.3.4 Where the depth of a bending member exceeds its breadth, $\mathrm{d}>\mathrm{b}$, lateral support shall be provided at points of bearing to prevent rotation.

3.3.3 Beam Stability Factor, \mathbf{C}_{L}

C_{L} Beam Stability Factor

Table 4.3.8 Incising Factors, \mathbf{C}_{1}

Design Value	$\mathrm{C}_{\mathbf{i}}$
$\mathrm{E}, \mathrm{E}_{\min }$	0.95
$\mathrm{~F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{t}}, \mathrm{F}_{\mathrm{c}}, \mathrm{F}_{\mathrm{v}}$	0,80
$\mathrm{~F}_{\mathrm{c} \perp}$	1.00

$$
C_{L}=1
$$

4,4.1 Stability of Bending Members

2×4 (a) $d / b \leq 2$; no lateral support shall be required.
(b) $2<\mathrm{d} / \mathrm{b} \leq 4$; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
(c) $4<\mathrm{d} / \mathrm{b} \leq 5$; the compression edge of the mem-

- ber shall be held in line-for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.
(d) $5<\mathrm{d} / \mathrm{b} \leq 6$; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
2×14
(e) $6<\mathrm{d} / \mathrm{b} \leq 7$; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
C_{L}
$C_{L}=1.0$
when bracing meets 4.4.1 for the depth/width ratio

Otherwise
$C_{L}<1.0$ calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
$\begin{aligned} & 3 \text { to } 1 \\ & 2 \times 6 \\ & 2 \times 8 \end{aligned}$	The ends of the beam should be held in position	
5 to 1 2×10	Hold compression edge in line (continuously)	
6 to 1 2×12	Diagonal bridging should be used	
7 to 1 2×14	Both edges of the beam should be held in line	

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_{L} is calculated using equation 3.3-6

The maximum allowable slenderness, R_{B} is $\mathbf{5 0}$

Adjustment Factors for Shear

Allowable Flexure Stress $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$
F_{v} from tables determined by species and grade
$F_{v}{ }^{\prime}=F_{v}$ (usage factors)

Usage factors for shear:
\underline{C}_{D} Load Duration Factor
$\overline{\mathrm{C}}_{\mathrm{M}}$ Moisture Factor
$\overline{\mathrm{C}}_{\mathrm{t}} \quad$ Temperature Factor
$\overline{\mathrm{C}}_{\mathrm{i}}$ Incising Factor

Shear at Supports

Modified shear V^{\prime} used to compute reduced shear f_{v}^{\prime}

Analysis Procedure

Given: loading, member,size, material and span.
Req'd: Safe or Unsafe

1. Find Max Shear \& Moment -

- Simple case - equations
- Complex case - diagrams

2. Determine actual stresses

- $f_{b}=M / S$
- $f_{v}=1.5 \mathrm{~V} / \mathrm{A}$

3. Determine allowable stresses

- F_{b} and F_{v} (from NDS) sup.
- $F_{b}{ }^{\prime}=F_{b}$ (usage factors)
- $F_{\mathrm{v}}{ }^{\prime}=F_{\mathrm{v}}$ (usage factors)

4. Check that actual \leq allowable

- $f_{b} \leq F_{b}^{\prime} \quad \sim$
- $f_{v} \leq F_{v}^{\prime}$

5. Check deflection

Nominal Size b x d	Standard Dressed Size (S4S) $\begin{gathered} b \times d \\ \text { in. } \times \text { in. } \end{gathered}$	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }{ }^{2} \\ \hline \end{gathered}$	X-X AXIS		Y-Y AXIS	
			Section Modulus $\begin{aligned} & \mathbf{S}_{\mathrm{xx}} \\ & \text { in. }{ }^{3} \end{aligned}$	Moment of Inertia $I_{x x}$ in. ${ }^{4}$	$\begin{array}{\|c\|} \hline \text { Section } \\ \text { Modulus } \\ \mathbf{S}_{\mathrm{yy}} \\ \text { in. }^{3} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{yy}}{ }^{4} \\ \text { in. }{ }^{4} \\ \hline \end{array}$
Boards ${ }^{1}$						
1×3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	$3 / 4 \times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 \times 3-1/2	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	1-1/2 $\times 9-1 / 4$	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 2 13-1/4	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 $\times 5-1 / 2$	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 $\times 7-1 / 4$	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	3-1/2 $\times 3-1 / 2$	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 \times 4-1/2	15.75	11.81	26.58	9.188	16.08
4×6	3-1/2 $\times 5-1 / 2$	19.25	17.65	48.53	11.23	19.65
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	3-1/2 $\times 9-1 / 4$	32.38	49.91	230.8	18.89	33.05
4×12	$3-1 / 2 \times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

6. Check bearing ($\mathrm{F}_{\mathrm{b}}=$ Reaction $/ \mathrm{A}_{\text {bearing }}$)

Analysis Example

Given:

DATASET: $1 \quad-2-$	
Span A	
Span B	17 FT
Joist O.C. Spacing	11 FT
Wood Density	45 PCF
Joist Size	$2 \times 10 \mathrm{NOMINAL}$
Beam Size	$6 \times 16 \mathrm{NOMINAL}$
Floor DL (not including joist)	assembly area- Occupancy or Use fixed seats

Req'd: pass or fail for floor joist

University of Michigan, TCAUP

ASCE-7 Table 4.3-1: Live Load $=60$ PSF ASCE-7 2.4.1 ASD load case: D + L 2×10 Joist + floor load:

$$
\begin{aligned}
& \text { D }+L \\
& \left(\text { SELF Weriant }+0 \frac{0 . C .}{12}\right)+\left(\frac{0 . c .}{12}\right) \\
& \left(4.336 \text { eLF }+3 \text { PSF } \frac{16^{\prime \prime}}{12}\right)+\left(\text { GOPSF } \frac{16^{\prime \prime}}{12}\right) \\
& 8.336 \text { PF }+80 \mathrm{PLF}=88.336 \text { PF }
\end{aligned}
$$

Analysis Example (joist)

1. Find Max Shear \& Moment on Joist

By equations:
Shear:

$$
\frac{w l}{2}=\frac{88.336(11)}{2}=\underline{485.848 \mathrm{lbs}}
$$

Moment:

$$
\frac{w l^{2}}{8}=\frac{88.336\left(11^{2}\right)}{8}=1336.08 \mathrm{ft}-\mathrm{lbs}
$$

Analysis Example

2. Determine actual stresses in joists

- $f_{b}=M / S$
- $f_{v}=1.5 \mathrm{~V} / \mathrm{A}$

$$
\begin{aligned}
& f_{b}=\frac{M}{S_{x}}=\frac{1336^{\prime}-*(12)}{21.39 \mathrm{~m}^{3}}=749.5 \mathrm{PSI} \\
& f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5(485.8)^{*}}{13.88 \mathrm{~m}^{2}}=52.5 \mathrm{PSI}
\end{aligned}
$$

Species and Grade

3. Determine allowable stresses - NDS Supplement

- $\mathrm{F}_{\mathrm{b}}=875 \mathrm{psi}$
- $F_{\mathrm{v}}=135 \mathrm{psi}$

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine -see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE AA ADJUSTMENT FACTORS

Analysis Example

3．Determine allowable stresses－NDS Supplement
－Adjustment Factors

$C D=$ ？
$C M=1$
$\mathrm{Ct}=1$
CL＝？
$C F=?$
Cfu $=1$
$\mathrm{Ci}=1$
$\mathrm{Cr}=$ ？
Table 4．3．1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										LRFD only		
						亮 号 部									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	$\mathrm{C}_{\text {D }}$	C．M	／	C_{L}	C_{F}	Cfil	Ci	C_{r}	－	－	－	K_{F}	ϕ_{b}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	X	$\mathrm{C}_{\text {D }}$	C_{M}	C_{1}	－	－	－	C_{i}	－	－	－	－	K_{F}	ϕ_{v}	λ

Analysis Example

Table 2．3．2 Frequently Used Load Duration Factors， $\mathbf{C}_{\text {D }}{ }^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy $\mathbf{\text { Live Load }}$
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind／Earthquake Load
Impact ${ }^{2}$	2.0	Impact Load

C_{F} Size factor
2×10
use 1.1

Grades	Width（depth）	F_{b}		F_{t}	F_{c}
		Thickness（breadth）			
		（2）\＆3＂	4＂		
Select Structural， No． 1 \＆Btr， No．1，No．2， No． 3	2＂，3＂，\＆4＂	1.5	1.5	1.5	1.15
	5＂	1.4	1.4	1.4	1.1
	6 ＂	1.3	1.3	1.3	1.1
	$8{ }^{\prime \prime}$	1.2	1.3	1.2	1.05
	（10）	1.1	1.2	1.1	1.0
	12＂	1.0	1.1	1.0	1.0
	14 ＂\＆wider	0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{\prime \prime}$ \＆6＂	1.0	1.0	1.0	1.0
	8＂\＆wider	Use No． 3 Grade tabulated design values and size factors			
Construction， Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.0	1.0	1.0	1.0
Utility	4＂	1.0	1.0	1.0	1.0
	2＂\＆3＂	0.4	－	0.4	0.6

Analysis Example

C_{r} Repetitive Member Factor

16" о.с. : $C_{r}=1.15$

Repetitive Member Factor, C_{r}

Bending design values, F_{b}, for dimension lumber $2^{\prime \prime}$ to 4 " thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than $24^{\prime \prime}$ on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Analysis Example

C_{L} Repetitive Member Factor $2 \times 10 \mathrm{w} /$ flooring: $\mathrm{C}_{\mathrm{L}}=1.0$	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
	2 to 1	None	
	3 to 1 $\begin{aligned} & 2 \times 6 \\ & 2 \times 8 \end{aligned}$	The ends of the beam should be held in position	
$C_{L}=1.0$ if depth/width ratio meets criteria in $\text { 4.4.1 } \mathrm{C}_{\mathrm{L}}=1.0$	5 to 1 2×10	Hold compression edge in line (continuously)	
Otherwise: $C_{L}<1.0$ calculate factor using section 3.3.3	6 to 1 2×12	Diagonal bridging should be used	
	7 to 1 2×14	Both edges of the beam should be held in line	

Analysis Example

3. Determine allowable stresses

- $F_{b}{ }^{\prime}=F_{b}\left(C_{D}\right)\left(C_{L}\right)\left(C_{F}\right)\left(C_{r}\right)$
- $F_{b}{ }^{\prime}=875(1.0)(1.0) \underset{C_{p}}{(1.1)}(1.0) \underset{C_{r}}{(1.15)}=\underline{1107} \mathrm{psi}$
- $\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)$
- $F_{v}{ }^{\prime}=135(1.0)=135 \mathrm{psi}$

4. Check that actual \leq allowable

- $f_{b}<F_{b}$ $f_{b}=\frac{M}{S_{x}}=\frac{1336^{\prime}-(12)}{21.39 \mathrm{~m}^{3}}=749.5 \mathrm{PSI}$
- $f_{v}<F_{v}^{\prime}$

$$
f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5(485.8)^{*}}{13.80 \mathrm{~m}^{2}}=52.5 \mathrm{PSI}
$$

5. Check deflection
6. Check bearing $\left(F_{c p}=R / A_{b}\right)$

Analysis Example

5. Check deflection

- ND 3.5
- $\Delta_{L T}$-Long term
- $\Delta_{\text {ST }}$-Short term
- K_{cr} - creep factor
$\Delta_{\mathrm{T}}=\underline{\mathrm{K}_{\mathrm{cr}} \Delta_{\mathrm{LT}}}+\Delta_{\mathrm{ST}} \quad$ (NDS 3.5-1)
K_{cr}
- 1.5 dry, seasoned lumber \longleftarrow
- 2.0 wet service conditions
- 2.0 wood panels
- 2.0 CLT (dry) .

$$
\begin{aligned}
1.5(.3)(.21)+.7(.21) & = \\
+.14 & =0.24
\end{aligned}
$$

$$
\begin{aligned}
30 \% L T & -70 \% \text { ST } \\
\Delta_{屯}=\frac{5 \omega l^{4}}{384 E I} & =\frac{5(88.336) 11^{4}(1728)}{384(1400000)(98.93)} \\
& =0.210^{\prime \prime} \\
\frac{l}{360}=\frac{11(12)}{360} & =0.367^{\prime \prime}
\end{aligned}
$$

TABLE 1604.3 DEFLECTION LIMITS ${ }^{\text {a, }}$ b, $\mathrm{c}, \mathrm{h}, \mathrm{i}$

$$
\text { - } 2.0 \text { CLI (dry) . }
$$

Analysis Example

6. Check bearing : $\mathrm{F}_{\mathrm{c} \perp}<\mathrm{P} / \mathrm{A}_{\mathrm{b}}$
$\mathrm{F}_{\mathrm{c} \perp}=425 \mathrm{psi}$
$\mathrm{P}=\mathrm{R}=485.8 \mathrm{lbs}$
$\mathrm{A}_{\mathrm{b}}=1.5^{\prime \prime}\left(1^{\prime \prime}\right)=1.5 \mathrm{in}^{2}$

3.10.4 Bearing Area Factor, \mathbf{C}_{b}

Reference compression design values perpendicular to grain F_{cL} apply to bearings of any length at the ends of a member, and to all bearings $6^{\prime \prime}$ or more in length at any other location. For bearings less than $6^{\prime \prime}$ in length and not nearer than $3^{\prime \prime}$ to the end of a member, the reference compression design value perpendicular to grain, $\mathrm{F}_{\mathrm{c} \mathrm{\perp}}$, shall be permitted to be multiplied by the following bearing arca factor, C_{b} :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{b}}=\frac{\ell_{\mathrm{b}}+0.375}{\ell_{\mathrm{b}}} \tag{3.10-2}
\end{equation*}
$$

where:
$\ell_{0}=$ bearing length measured parallel to grain, in.
Equation 3.10-2 gives the following bearing area factors, C_{b}, for the indicated bearing length on such small areas as plates and washers:

Table 3.10.4 Bearing Area Factors, C_{b}

ℓ_{b}	$0.5^{\prime \prime}$	$1^{\prime \prime}$	$1.5^{\prime \prime}$	$\underline{2^{\prime \prime}}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$ or more
C_{b}	1.75	1.38	1.25	$\underline{1.19}$	1.13	1.10	$\underline{1.00}$

For round bearing areas such as washers, the bearing length, ℓ_{b}, shall be equal to the diameter.

Design Procedure - Joist or Rafter

Given: loading criteria, wood, span, size
Req'd: controlling load, o.c. spacing

1. Determine each load

- check applicable load cases
- determine loads
- choose controlling load case

2. Find Max Shear \& Moment
Balanced

- assume o.c. spacing = 12"

3. Calculate actual stresses
4. Calculate allowable stresses -

- find applicable factors

5. Choose spacing

- determine utilization ratio: $\mathrm{fb} / \mathrm{Fb}$
- divide o.c. spacing by the ratio
- round down to modular spacing (12, 16 or 24)

6. Check shear stress
7. Check deflection
8. Check bearing

Design Example

2

Given: 2×10 Hem Fir No. 2 rafter
DATASET: 1 -2-
Location (city in Michigan)
Terrain Category (Sec 26.7)
Gaylord 50 ps
Exposure of Roof (Tab 7.3-1)
Thermal Factor, Ct (Tab 7.3-2)
Roof Surface
Risk Category (Tab 1.5-2)
No. Slippery -
Roof Span, L
II
Roof Slope F" in 12"
30 FT
4 IN/12"

Req'd: rafter spacing

University of Michigan, TCAUP

1. Determine Loads:

Dead: ASCE-7 Tab. C3.1-1a $\rightarrow 7$ PSF (12" o.c.)
Roof Live: ASCE-7 4.8.2 $\rightarrow 20$ PSF
Snow: ASCE-7 Fig. 7.2-1: pg = 50 PSF
ASCE-7 2.4.1 ASD load combinations:
D $\quad C_{D}=0.9-\mathrm{M} / \mathrm{q}$
D + Lr
$C_{D}=1.25$,
M/1.25
$\mathrm{D}+\mathrm{S} \quad \mathrm{C}_{\mathrm{D}}=1.15, \quad \mathrm{M} / 1.155$
Arch 544

Analysis Example (rafter)

Roof Live Load

- Minimum L_{r} between 12 PSF and 20 PSF
- $L_{r}=20 R_{1} R_{2}$
- See 4.9.1

for $A_{t} \leq 200 \mathrm{ft}^{2}\left(18.58 \mathrm{~m}^{2}\right)$
for $200 \mathrm{ft}^{2}<\mathrm{A}_{\mathrm{t}}<600 \mathrm{ft}^{2}$
for $A_{t} \geq 600 \mathrm{ft}^{2}\left(55.74 \mathrm{~m}^{2}\right)$

Balanced

where, for a pitched roof, $F=$ number of inches of rise per ft.
for an arch or dome, $\mathrm{F}=$ rise-to-span ratio multiplied by 32 .

Design Example (rafter)

p_{g} - flat roof snow load $=50 \mathrm{psf}$
 $p_{f}=0,7 C_{e} C_{t} I_{s} p_{g}$
 - Eq. 7.3-1

Low Slope Roofs

- Monoslope, hip or gable < 15°
- $4 / 12=18.4^{\circ}$

Minimum for Low Slope Roofs

- Minimum where $\mathrm{p}_{\mathrm{g}} \leqq 20=\mathrm{I}_{\mathrm{s}} \mathrm{p}_{\mathrm{g}}$ PSF
- Minimum where $\mathrm{p}_{\mathrm{g}}>20=\mathrm{I}_{\mathrm{s}} 20$ PSF

Design Example (rafter)

C_{e} - Exposure Factor

- Table 7-2
- Terrain Category C
- Roof Exposure "Partially Exposed"
- $\mathrm{Ce}=1.0$

7.3 FLAT ROOF SNOW LOADS, p_{f}

The flat roof snow load, p_{p}, shall be calculated in $\mathrm{lb} / \mathrm{ft}^{2}$ $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ using the following formula:

$$
\begin{equation*}
p_{f}=0.7 C_{e} C_{t} I_{s} p_{g} \tag{7.3-1}
\end{equation*}
$$

7.3.1 Exposure Factor, C_{e}

The value for C_{e} shall be determined from Table 7-2.
7.3.2 Thermal Factor, C_{t}

The value for C_{t} shall be determined from Table 7-3.
7.3.3 Importance Factor, I_{s}

The value for I_{s} shall be determined from Table $1.5-2$ based on the Risk Category from Table 1.5-1.
7.3.4 Minimum Snow Load for Low-Slope Roofs, \boldsymbol{p}_{m} A minimum roof snow load, p_{m}, shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. The minimum roof snow load for low-slope roofs shall be obtained using the following formula:
Where p_{g} is $20 \mathrm{lb} / \mathrm{ft}^{2}\left(0.96 \mathrm{kN} / \mathrm{m}^{2}\right)$ or less:

$$
p_{m}=I_{g} p_{g} \quad\left(\text { Importance Factor times } p_{g}\right)
$$

Where p_{g} exceeds $20 \mathrm{lb} / \mathrm{ft}^{2}\left(0.96 \mathrm{kN} / \mathrm{m}^{2}\right)$:

$$
p_{m}=20\left(I_{s}\right) \quad\left(20 \mathrm{lb} / \mathrm{ft}^{2} \text { times Importance Factor }\right)
$$

This minimum roof snow load is a separate uniform load case. It need not be used in determining

Table 7-2 Exposure Factor, C_{e}

Terrain Category	Exposure of Roof ${ }^{\text {a }}$		
	Fully Exposed	Partially Exposed	Sheltered
B (see Section 26.7)	0.9	1.0	1.2
C] (see Section 26.7)	0.9	1.0	1.1
D (see Section 26.7)	0.8	0.9	1.0
Above the treeline in windswept mountainous areas.	0.7	0.8	N/A
In Alaska, in areas where trees do not exist within a 2-mile (3-km) radius of the site.	0.7	0.8	N/A

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.
${ }^{a}$ Definitions: Partially Exposed: All roofs except as indicated in the following text. Fully Exposed: Roofs exposed on all sides with no shelter ${ }^{b}$ afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load (h_{b}), or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.
${ }^{b}$ Obstructions within a distance of $10 h_{o}$ provide "shelter," where h_{o} is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

Design Example (rafter)

Table 7.3-2 Thermal Factor, \boldsymbol{C}_{t}

C_{t} - Thermal Factor

- Table 7.3-2
- given = 1.0
$\mathrm{I}_{\text {s }}$ - Importance Factor
- Table 1.5-2
- given categor (iI): Is = 1.0

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, I_{s}	Ice Importance Factor- Thickness, I_{i}	Ice Importance Factor-Wind, I_{w}	Seismic Importance Factor, I_{e}
I	0.80	1.00	1.00	
II	1.00	1.80	1.00	1.00
III	1.10	1.15	1.00	1.00
IV	1.20	1.25	1.00	1.25
In			1.50	

Note: The component importance factor, I_{p}, applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

Thermal Condition	c_{t}
All structures except as indicated below	1.0
Structures kept just above freezing and others with cold,	1.1
\quad ventilated roofs in which the thermal resistance (R-value)	
between the ventilated space and the heated space exceeds	
$25^{\circ} \mathrm{F} \times h \times \mathrm{ft}^{2} / \mathrm{Btu}\left(4.4 \mathrm{~K} \times \mathrm{m}^{2} / \mathrm{W}\right)$	
Unheated and open air structures	
Freezer building	1.2
Continuously heated greenhouses ${ }^{\mathrm{b}}$ with a roof having a	1.3
thermal resistance (R-value) less than $2.0^{\circ} \mathrm{F} \times h \times \mathrm{ft}^{2} / \mathrm{Btu}$	0.85
$\left(0.4 \mathrm{~K} \times \mathrm{m}^{2} / \mathrm{W}\right)$	

${ }^{\text {a }}$ These conditions shall be representative of the anticipated conditions during winters for the life of the structure.
${ }^{6}$ Greenhouses with a constantly maintained interior temperature of $50^{\circ} \mathrm{F}$ $\left(10^{\circ} \mathrm{C}\right)$ or more at any point $3 \mathrm{ft}(0.9 \mathrm{~m})$ above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure.

Design Example (rafter)

p_{f} - flat roof snow load

$p_{f}=0.7 C_{e} C_{t} I_{s} p_{g}$
$0.71 .01 .01 .050=35 \mathrm{psf}$
p_{s} - sloped roof snow load
$p_{s}=C_{s} p_{f}$

- Eq. 7.4-1
C_{s} - Roof Slope Factor
- Figure 7-2
- $\mathrm{C}_{1}=\mathrm{C}_{\mathrm{t}}$
- Equations given in commentary C7.4
- given roof surface "not slippery"
- $\mathrm{Cs}=1.0$
p_{s}
$\mathrm{p}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s}} \mathrm{p}_{\mathrm{f}}=1.035 \mathrm{psf}=35 \mathrm{psf}$

7-2a: Warm roofs with $\mathrm{C}_{1<1.0}$

Design Example (rafter)

Balanced

- $\mathrm{p}_{\mathrm{s}}=35 \mathrm{psf}$

Unbalanced

For $\mathrm{W} \leq 20 \mathrm{FT}$

- $I_{s} \times p_{g}=1.050=50 \mathrm{psf}$

For W > 20FT

- See Fig. 7.6-2

Unbalanced Gable Roof Loads

- Not for F > 7 on 12 (30.2°)
- Not for $\mathrm{F}<1 / 2$ on $12\left(2.38^{\circ}\right)$

FIGURE 7-5 Balanced and Unbalanced Snow Loads for Hip and Gable Roofs.

Analysis Example (rafter)

Controlling (greatest) load

- $\quad \mathrm{D}=7 \mathrm{psf}$ (on surface)
- $\mathrm{S}=50 \mathrm{psf}$ (projected)
- $D+S=57.38 \mathrm{psf}$ (projected)

2. Find Max Shear \& Moment

By equations (projected):

Shear:

$$
\frac{w l}{2}=\frac{57.38(15)}{2}=\underline{430.3 \mathrm{lbs}}
$$

Moment:

$$
\frac{w l^{2}}{8}=\frac{57.38\left(15^{2}\right)}{8}=1614 \mathrm{ft}-\mathrm{lbs}
$$

Analysis Example

3. Determine actual stresses

- $f_{b}=M / S$
- $\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} / \mathrm{A}$

$$
\begin{aligned}
& f_{b}=\frac{M}{S_{x}}=\frac{1614^{1.4}(12)}{21.39 \mathrm{~m}^{3}}=905.4 \mathrm{ps1} \\
& f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5(430.3)}{13.88}=46.5 \mathrm{ps1}
\end{aligned}
$$

Species and Grade

4. Determine allowable stresses - NDS Supplement

- $\mathrm{F}_{\mathrm{b}}=850 \mathrm{psi}$
- $F_{\mathrm{v}}=150 \mathrm{psi}$

Table 4A	Reference Design Values for Visually Graded Dimension Lumber (Cont.)
$\mathbf{(2 " ~}^{\prime \prime}$ "thick)	

(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

Analysis Example

4. Determine allowable stresses - NDS Supplement

- Adjustment Factors

Determine factors:

$$
\begin{aligned}
& \mathrm{CD}=? 1.15 \\
& \mathrm{CM}=1 \\
& \mathrm{Ct}=1 \\
& \mathrm{CL}=? \quad 1 \\
& \mathrm{CF}=? ? \\
& \mathrm{Cfu}=1 \\
& \mathrm{Ci}=1 \\
& \mathrm{Cr}=? ?
\end{aligned}
$$

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										LRFD only		
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	$\mathrm{C}_{\text {D }}$	C_{M}	C_{1}	C_{L}	C_{F}	$\mathrm{Cfu}_{\text {fu }}$	C_{i}	C_{r}	-	-	-	K_{F}	ϕ_{0}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{m}	C_{1}	-	-	-	$\mathrm{C}_{\text {i }}$	-	-	-	-	K_{F}	ϕ_{v}	λ

Analysis Example

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C D}^{1}$

Load Duration	C $_{\mathrm{D}}$	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ${ }^{2}$	2.0	Impact Load

C_{F} Size factor

$$
2 \times 10
$$

$$
\text { use } 1.1
$$

Grades	Width (depth)	F_{b}		F_{t}	F_{c}
		Thickness (breadth)			
		$2^{\prime \prime}$ \& 3"	$4 "$		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	2", 3", \& 4"	1.5	1.5	1.5	1.15
	5"	1.4	1.4	1.4	1.1
	$6 "$	1.3	1.3	1.3	1.1
	$8{ }^{\prime \prime}$	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12"	1.0	1.1	1.0	1.0
	14" \& wider	0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design values and size factors			
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}$, \& 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	$2^{\prime \prime}$ \& 3"	0.4	-	0.4	0.6

Analysis Example

C_{r} Repetitive Member Factor

12" о.с. : $C_{r}=1.15$

Repetitive Member Factor, C_{r}

Bending design values, F_{b}, for dimension lumber $2^{\prime \prime}$ to 4 " thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than $24^{\prime \prime}$ on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Analysis Example

C_{L} Repetitive Member Factor $2 \times 10 \mathrm{w} /$ flooring: $\mathrm{C}_{\mathrm{L}}=1.0$	Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
	2 to 1	None	
	3 to 1 $\begin{aligned} & 2 \times 6 \\ & 2 \times 8 \end{aligned}$	The ends of the beam should be held in position	
$C_{L}=1.0$ if depth/width ratio meets criteria in $\text { 4.4.1 } \mathrm{C}_{\mathrm{L}}=1.0$	5 to 1 2×10	Hold compression edge in line (continuously)	
Otherwise: $C_{L}<1.0$ calculate factor using section 3.3.3	6 to 1 2×12	Diagonal bridging should be used	
	7 to 1 2×14	Both edges of the beam should be held in line	

Analysis Example

4. Determine allowable stresses

- $\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{r}}\right)$
- $\mathrm{F}_{\mathrm{b}}{ }^{\prime}=850(1.15)(1.0)(1.1)(1.0)(1.15)=1236 \mathrm{psi}$
- $F_{v^{\prime}}=F_{v}\left(C_{D}\right)$
- $\mathrm{F}_{\mathrm{v}}{ }^{\prime}=150(1.15)=172.5 \mathrm{psi}$

5. Check that actual \leq allowable

- $f_{b}<F_{b}^{\prime}$
- $f_{v}<F_{v}^{\prime}$

6. Utilization Ratio

- 905.4/1236 $=0.732$.
- 12" о.с. $/ 0.732=16.38$
- try 2×10 at 16 " o.c. ₹
- f_{b} at 16 " о.c. $905.4(16 / 12)=1207 \mathrm{psi}$

$$
\begin{aligned}
& f_{b}=\frac{M}{S_{x}}=\frac{1614^{1-\alpha}(12)}{21.39 \mathrm{~m}^{3}}=905.4 \mathrm{ps} 1 \\
& f_{X}=\frac{3}{2} \frac{V}{A}=\frac{1.5(430.3)}{13.88}=46.5 \mathrm{ps1}
\end{aligned}
$$

7. Check deflection
8. Check bearing $\left(F_{c p}=R / A_{b}\right)$

Analysis Procedure

Given: member size, material and span.
Req'd: Max. Safe Load (capacity)

1. Assume f = F

- Maximum actual = allowable stress

2. Solve stress equations for force

- $M=F_{b} S$
- $V=0.66 F_{v} A$

3. Use maximum forces to find loads

- Back calculate a load from forces
- Assume moment controls

4. Check Shear

- Use load found is step 3 to check shear stress.
- If it fails (fv > F'v), then find load based on shear.

5. Check deflection
6. Check bearing

Nominal Size b x d	Standard Dressed Size (S4S) $b \times d$in. \times in.	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }{ }^{2} \\ \hline \end{gathered}$	X-X AXIS		Y-Y AXIS	
			Section Modulus $\begin{aligned} & \mathbf{S}_{\mathrm{xx}} \\ & \text { in. }{ }^{3} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ I_{x x} \\ \text { in. }{ }^{4} \\ \hline \end{array}$	Section Modulus $\begin{aligned} & \mathrm{S}_{\mathrm{yy}} \\ & \text { in. } \end{aligned}$	Moment of Inertia I_{yy} in. ${ }^{4}$
Boards ${ }^{1}$						
1×3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	$3 / 4 \times 7-1 / 4$	5.438	6.570	23.82	0.680	0.255
1×10	$3 / 4 \times 9-1 / 4$	6.938	10.70	49.47	0.867	0.325
1×12	$3 / 4 \times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	1-1/2 $\times 9-1 / 4$	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 2 13-1/4	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 $\times 3-1 / 2$	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 $\times 5-1 / 2$	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 $\times 7-1 / 4$	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 2 15-1/4	38.13	96.90	738.9	15.89	19.86
4×4	3-1/2 $\times 3-1 / 2$	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 $\times 4-1 / 2$	15.75	11.81	26.58	9.188	16.08
4×6	3-1/2 $\times 5-1 / 2$	19.25	17.65	48.53	11.23	19.65
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	$3-1 / 2 \times 9-1 / 4$	32.38	49.91	230.8	18.89	33.05
4×12	$3-1 / 2 \times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

from NDS 2012

Analysis Example

Given: member size, material and span.
load duration $=10 \mathrm{~min}$.
Req'd: Max. Safe Load (capacity)

1. Assume f = F'

- Maximum actual = allowable stress

GIVEN: $\begin{aligned} & \text { SPAN }=6^{\prime} \text { Pe } \\ & \text { SECTION }=2 \times 4(1.5 \times 3.5)\end{aligned}$ $F_{b}=875 p_{s i} \quad F_{v}=135 p s i$
REQ'D: MSXIMUM LOAD P

Table 4A Reference Design Values for Visual (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southem Pine-see duration and dry service conditions. See ND؟ adjustment factors.)

USE WITH TABLE 4A AL				
Species and commercial grade	Size classification	Design val		
		Bending F	Tension parallel to grain F_{t}	Shear parallel to grain F_{v}
SPRUCE-PINE-FIR				
Select Structural		1,250	700	135
No. 1/ No. 2.	$2^{\prime \prime}$ \& wider	875	450	135
No. 3		500	250	135
Stud	$2^{\prime \prime}$ \& wider	675	350	135
Construction		1,000	500	135
Standard	$2^{\prime \prime}-4^{\prime \prime}$ wide	550	275	135
Utility		275	125	135

Analysis Example

Determine allowable stresses - NDS Supplement

- Adjustment Factors

Determine factors:

$$
\begin{aligned}
& C D=? 10 \mathrm{~mm} \\
& C M=1 \\
& C t=1- \\
& C L=1-2 \times 4 \\
& C F=? \\
& \mathrm{Cfu}=1- \\
& \mathrm{Ci}=1- \\
& \mathrm{Cr}=1
\end{aligned}
$$

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{gathered} \text { ASD } \\ \text { only } \end{gathered}$	ASD and LRFD										$\begin{gathered} \text { LRFD } \\ \text { only } \end{gathered}$		
						$\begin{aligned} & \text { 䯧 } \\ & \text { 品 } \end{aligned}$									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{1}	C_{L}	C_{F}	$\mathrm{Cfu}_{\text {fu }}$	C_{i}	C_{r}	-	-	-	K_{F}	ϕ_{0}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	C_{1}	-	-	-	C_{i}	-	-	-	-	K_{F}	ϕ_{v}	λ

Analysis Example

2. Solve stress equation for moment

- $M=F_{b}^{\prime} S_{x}$ (ie. moment capacity)

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C}_{\mathbf{D}}{ }^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	Snow Load	
Seven days L_{r}	1.25	Construction Load Ten minutes
Impact ${ }^{2}$	1.6	Wind/Earthquake Load
Impact Load		

$$
\text { Seven days } l_{r}
$$

$$
\begin{aligned}
& \text { Ten minutes } \\
& \text { Impact }^{2}
\end{aligned} \frac{1.6}{2.0} \text { Wind/Earthquake Load }
$$

Impact Load

Analysis Example (cont.)

3. Use maximum forces to find loads

- Back calculate a maximum load from moment capacity

4. Check shear

- Check shear for load capacity from step 3.
- Use P from moment to find Vmax
- Check that fv < Fo'

4. Check deflection (serviceability)

$$
\begin{aligned}
H_{4}= & P L / 4 \\
P & =N_{t} 4 / L \\
P & =536(4) / 6 \\
P & =357
\end{aligned}
$$

5. Check bearing (serviceability)

$$
\begin{aligned}
& F_{b}=F_{b}^{\prime}=8.75(1.6)(1.5) \\
& f_{b}=F_{b}^{\prime}=8.75(1.6)(1.5) \\
& F_{b}^{\prime}=\frac{2100 \mathrm{ps}}{1} \\
& S_{x}=3.063 \mathrm{~m}^{3} \\
& M_{t}=F_{b}^{\prime} S_{x}=2100(3.063) \\
& =6432.3^{\prime \prime} \text { - } x^{*} \\
& =536^{\circ}
\end{aligned}
$$

Question ...

For the No. 2 S-P-F 2×4 section determine the safe center point load capacity with the member flatwise.

$$
\begin{aligned}
& F_{b}^{\prime}= F_{b}\left(C_{D} C_{M} C_{t} C_{L} C_{F} C_{f u} C_{i} C_{r}\right) \\
& C_{D}=1.6 \\
& C_{F}=1.5 \\
& \frac{C_{f u}}{}=1.1 \\
& 875(1.6 \cdot 1.5 \cdot 1.1)=\$ 2310 \mathrm{psi}
\end{aligned}
$$

$F_{v}^{\prime}=F_{v}\left(C_{D} C_{M} C_{t} C_{i}\right)$
$2310(1.313)=3033$ m $n=252.75^{x}$ 252 (4) face), the bending design value, F_{b}, shall also be permitted $M=F_{b}^{\prime} S_{y} \quad P=M 4 / L \quad P=\frac{252(4)}{6^{\prime}}=168^{*}$ $S_{y}=1.313$ in 3

Check that $\mathrm{f}_{\mathrm{v}}<\mathrm{F}_{\mathrm{v}}$

Flat Use Factor, C_{fu}
Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide to be multiplied by the following flat use factors:

Flat Use Factors, $\mathbf{C f u}_{\text {fu }}$		
Width	Thickness (breadth)	
(depth)	$2^{\prime \prime} \& 3^{\prime \prime}$	$4^{\prime \prime}$
$2^{\prime \prime} \& 3^{\prime \prime}$	1.0	-
$4^{\prime \prime}$	1.1	1.0
$5^{\prime \prime}$	1.1	1.05
$6^{\prime \prime}$	1.15	1.05
$8^{\prime \prime}$	1.15	1.05
$10^{\prime \prime} \&$ wider	1.2	1.1

Analysis Example 3

3. Sawn Lumber - Rafters
 Analyze the simple roof rafter system to determine safety in flexure. Determine the controlling load combination (see ASCE-7 2.4). Consider all load cases which include D, Lr, S and W together with the corresponding CD. Assume adequate bracing to give $\mathrm{CL}=1$. Also $\mathrm{CM}, \mathrm{Ct}, \mathrm{Cfu}$ and Ci should be taken as 1 .
 DATASET: $1 \quad-2-$
 Wood Species
 Wood Grade
 Western Cedars
 Rafter Size
 No. 2
 Rafter O.C. Spacing 2×10
 Rafter Span 10 FT
 Roof Slope 18 INFT
 Dead Load (includes selfweight)
 Roof Live Load
 14 PSF
 Snow Load
 12 PSF
 20 PSF
 Wind Load (+ is pressure
 inward)
 20 PSF

D: 14 PSF $\frac{16}{12}=18.67$ PLF
$18.67 \frac{18.03}{10 .}=33.65$ PLF (PRBJJRCTED)
L: 12 PSF $\frac{16}{12}=16$ PLF (PROJRCTED)
$S:$ 2OPSF $\frac{16}{12}=26.47$ PLF (PROJRCTED)
w: 20 PSF $\frac{16}{12}=26.67$ PLF (NORMSL $)$ ON 18.03^{\prime}

Analysis Example 3

D: 14 PSF $\frac{16}{12}=18.67 \mathrm{PLF}$
$18.67 \frac{18.03}{10}=33.65$ PLF (PBSOJRCTED $)$
$L: 12$ PSF $\frac{16}{12}=16$ PLF (PROJRCTEDD)
S: 20 PSF $\frac{16}{12}=26.67$ PLF (PIBJRCTEID)
$W: 20$ PSF $\frac{16}{12}=26.67$ PLF (NORMAL)

Arch 544

Analysis Example 3

$$
\begin{aligned}
& \text { D: } 14 \text { PSF } \frac{16}{12}=18.67 \mathrm{PLF} \\
& 18.67 \frac{18.03}{10}=33.65 \text { PLF (PBROJRCTED) } \\
& L: 12 \text { PSF } \frac{16}{12}=16 \text { PLF (PROJRCTED) } \\
& S: \text { ZOPSF } \frac{16}{12}=26.67 \text { PLF (PROJRCTEID) } \\
& W: 20 \text { PSF } \frac{16}{12}=26.67 \text { PLF (NORMAL) } \\
& \operatorname{Moments:} \frac{\omega l^{2}}{8} \\
& \text { Q: } \frac{\begin{array}{l}
\text { PLF } \\
33.65(10)^{2} \\
8
\end{array}}{8}=420.6 \mathrm{FT}-\mathrm{LBS} \\
& L_{r}: \frac{16(10)^{2}}{\delta}=200 \mathrm{FT}-L B S \\
& \text { S. } \frac{26.67(10)^{2}}{8}=333.3 \text { FT.LBS . } \\
& W: \frac{26.67(18.0278)^{2}}{8}=1083.5 \text { FT.LBS } .
\end{aligned}
$$

Analysis Example 3

7. $0.0 D+0.6 W$

$$
\begin{aligned}
& \text { MOMENTS: } \frac{\omega l^{2}}{8} \\
& D: \frac{33.65(10)^{2}}{8}=420.6 \mathrm{FT} \text {-LBS } \\
& \text { L: } \frac{16(10)^{2}}{8}=200 \mathrm{FT} \text {-LBS } \\
& S: \frac{26.67(10)^{2}}{8}=333.3 \mathrm{FT}-\mathrm{LBS} \\
& W: \frac{26.67(18.0276)^{2}}{8}=1083.5 \mathrm{FT} . \mathrm{LBS}
\end{aligned}
$$

To find the controlling case :

Sum moments / C_{D}
the largest controls

Analysis Example 3

Other stress adjustment factors:
$C_{F} \underline{C_{r}}$

$$
\begin{aligned}
& \text { for } 16 \text { " oc. } \\
& C_{r}=1.15
\end{aligned}
$$

Repetitive Member Factor, $\mathbf{C}_{\mathbf{r}}$

Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 " on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Analysis Example 3

Tabulated allowable stress:
$\mathrm{F}_{\mathrm{b}}=700 \mathrm{psi}$

USE WITH TABLE 4A ADJUSTMENT FACTORS

Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G
		$\begin{gathered} \text { Bending } \\ \mathrm{F}_{\mathrm{b}} \\ \hline \hline \end{gathered}$	Tension parallel to grain\qquad F_{1}	Shear parallel to grain\qquad F_{v}	Compression perpendicular to grain \qquad $F_{c \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity		
							E	$E_{\text {min }}$	
WESTERN CEDARS									
Select Structural	2" \& wider	1,000	600	155	425	1,000	1,100,000	400,000	0.36
No. 1		725	425	155	425	825	1,000,000	370,000	
No. 2		700	425	155	425	650	1,000,000	370,000	
No. 3		400	250	155	425	375	900,000	330,000	
Stud	2" \& wider	550	325	155	425	400	900,000	330,000	
Construction		800	475	155	425	850	900,000	330,000	
Standard	$2^{\prime \prime}-4^{\prime \prime}$ wide	450	275	155	425	650	800,000	290,000	
Utility		225	125	155	425	425	800,000	290,000	

Analysis Example 3

allowable stress:
$\mathrm{F}_{\mathrm{b}}=700 \mathrm{psi}$

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										LRFD only		
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{1}	C_{L}	C_{F}	$\mathrm{Cfu}_{\text {fu }}$	C_{i}	C_{r}	-	-	-	K_{F}	ϕ_{0}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	$\mathrm{C}_{\text {D }}$	C_{M}	C_{1}	-	-	-	C_{i}	-	-	-	-	K_{F}	ϕ_{v}	λ

Analysis Example 3

actual stress:
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}_{\mathrm{x}}$

$$
2 \times 10
$$

$$
M
$$

$$
S_{x}
$$

$\mathrm{f}_{\mathrm{b}}=1158.15 \mathrm{ft}$.-lbs. (12) / $21.39 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=649.7 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}^{\prime}=1416.8 \mathrm{psi}>649 \mathrm{psi}$
... OK
$649 \frac{24^{\prime \prime}}{16}=973.5_{\text {ps 1 }}<1416$
try $24^{\prime \prime}$ oc. ?
check shear

Analysis Example

Given: loading, member size, material and span.
Req'd: LL capacity in psf

Analysis Example

Find Fb，Fv and Emin for Douglas Fir－South No2．
－（from NDS Supplement）

Table 4A Reference Design Values for Visually Graded Dimension Lumber （Cont．）（2＂－4＂thick）${ }^{1,2,3}$
（All species except Southern Pine－see Table 4B）（Tabulated design values are for normal load duration and dry service conditions．See NDS 4.3 for a comprehensive description of design value adjustment factors．）

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch（psi）							Specific Gravity ${ }^{4}$$\qquad$G	Grading Rules Agency
		Bending$F_{b}$$\qquad$	Tension parallel to grain\qquad F_{t}	Shear parallel to grain\qquad	Compression perpendicular to grain\qquad $\mathrm{F}_{\mathrm{c} \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$\mathrm{E}_{\text {min }}$		
DOUGLAS FIR－SOUTH										
Select Structural	2 L \＆wider	1，350	900	180	520	1，600	1，400，000	510，000	0.46	WWPA
No． 1		925	600	180	520	1，450	1，300，000	470，000		
No． 2		850	525	180	520	1，350	1，200，000	440，000		
No． 3		500	300	180	520	775	1，100，000	400，000		
Stud	2＂\＆wider	675	425	180	520	850	1，100，000	400，000		
Construction	$2^{\prime \prime}-4^{\prime \prime}$ wide	975	600	180	520	1，650	1，200，000	440，000		
Standard		550	350	180	520	1，400	1，100，000	400，000		
Utility		250	150	180	520	900	1，000，000	370，000		

Analysis Example

Section Properties：

$2 \times 10\left(3.5^{\prime \prime} \times 11.25\right.$＂$)$
Area $=13.88 \mathrm{in}^{2}$

$$
S x=21.39 \mathrm{in}^{3}
$$

Table 4．3．1 Applicability of Adjustment Factors for Sawn Lumber

		$\begin{aligned} & \text { ASD } \\ & \text { only } \end{aligned}$	ASD and LRFD										$\begin{aligned} & \text { LRFD } \\ & \text { only } \end{aligned}$		
						$\begin{aligned} & \text { 亮 } \\ & \text { H } \\ & \text { ジ } \end{aligned}$									
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	C_{L}	C_{F}	$\mathrm{Cfu}_{\text {fu }}$	C_{i}	C_{r}	－	－	－	K_{F}	ϕ_{b}	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	－	－	－	$\mathrm{C}_{\text {i }}$	－	－	－	－	K_{F}	ϕ_{v}	λ

Design Example

2x10 Doug Fir S No2 M.C.<19\%

Determine Adjustment Factors
$C_{r}=1.15$
$\mathrm{C}_{\mathrm{F}}=1.1 \quad 2 \times 10$
$\mathrm{C}_{\mathrm{M}}=1.0 \mathrm{LL}$

University of Michigan, TCAUP

Repetitive Member Factor, C
Bending design values, F_{b}, for dimension lumber 2" to $4^{\prime \prime}$ thick shall be multiplied by the repetitive member factor, $\mathrm{C}_{\mathrm{r}}=1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24 on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.
Wet Service Factor, C_{M}
When dimension lumber is used where moisture con tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, Cm_{M}					
F_{b}	F_{1}	Fv	$\mathrm{F}_{\text {cı }}$	$\mathrm{F}_{\text {c }}$	E and $\mathrm{E}_{\text {mio }}$
0.85*	1.0	0.97	0.67	0.8**	0.9

Size Factor, $\mathrm{C}_{\boldsymbol{F}}$
Tabulated bending, tension, and compression parallel to grain design values for dimension lumber $2^{\prime \prime}$ to 4 " thick shall be multiplied by the following size factors:

	Width (depth)	F_{5}		F_{t}	Fe
Grades		Thickness (breadth)			
		$2^{\prime \prime}$ \& $3^{\prime \prime}$	$4 "$		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	$2^{\text {". }} 3^{\text {", }}$, \& $4^{\prime \prime}$	1.5	1.5	1.5	1.15
	5 "	1.4	1.4	1.4	1.1
	$6^{\prime \prime}$	1.3	1.3	1.3	1.1
	$8^{\prime \prime}$	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.15	1.2	1.1	1.0
	$12^{\prime \prime}$	1.0	1.1	1.0	1.0
	$14^{\prime \prime}$ \& wider	0.9	1.0	0.9	0.9
Stud	$2^{\text {", }}$, $3^{\prime \prime}$, \& $4^{\text {" }}$	1.1	1.1	1.1	1.05
	5 " \& 6 "	1.0	1.0	1.0	1.0
	8 C \& wider	Use No .3 Grade tabulated design values and size factors			
Construction, Standard	$2^{\text {" }}, 3^{\prime \prime}, \& 4^{\text {" }}$	1.0	1.0	1.0	1.0
Uulility	4 "	1.0	1.0	1.0	1.0
	$2^{\prime \prime} \& 3^{\prime \prime}$	0.4	-	0.4	0.6
Copyright © American Wood Counal. Downloaded/pinted pursyant to Livense Agreement. No reproduction or transler authorized					
Arch 544			Slide 61 of 88		

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_{L} is calculated using equation 3.3-6
The maximum allowable slenderness, R_{B} is 50

1. For single span or cantilever bending members with loading conditions not specified in Table 3.3.3:
$\ell_{c}=2.06 \ell_{v} \quad$ when $\ell_{V} / \mathrm{d}<7$
$\begin{array}{ll}\ell_{c}=1.63 \ell_{v}+3 \mathrm{~d} & \text { when } 7 \leq \ell_{v} / \mathrm{d} \leq 14.3 \\ \ell_{0}=1.84 \ell_{v} & \text { when } \ell / \mathrm{d}>14.3\end{array}$
2. Multiple span applications shall be based on table values or engineering analysis.

C_{L} Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C_{L} is calculated using equation 3.3-6
The maximum allowable slenderness, R_{B} is $\mathbf{5 0}$
3.3.3.6 The slenderness ratio, R_{B}, for bending members shall be calculated as follows:

$$
\begin{equation*}
R_{B}=\sqrt{\frac{\ell_{e} \rrbracket}{\mathrm{~b}^{2}}} \tag{3.3-5}
\end{equation*}
$$

3.3.3.7 The slenderness ratio for bending members, R_{B}, shall not exceed 50 .
3.3.3.8 The beam stability factor shall be calculated as follows:
$\mathrm{C}_{\mathrm{L}}=\frac{1+\left(\mathrm{F}_{\mathrm{bE}} / F_{\mathrm{E}}^{*}\right)}{1.9}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{EE}} / F_{D}^{*}\right)}{1.9}\right]^{2}-\frac{\mathrm{F}_{\mathrm{DE}} / /_{\mathrm{F}}^{*}}{0.95}}$
where:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}^{*}= & \text { reference bending design value multiplied by } \\
& \text { all applicable adjustment factors except } \mathrm{C}_{\mathrm{fu}}, \\
& \mathrm{Cv} \text { (when } \mathrm{Cv} \leq 1.0 \text {), and } \mathrm{CL} \text { (see 2.3), psi } \\
\mathrm{F}_{\mathrm{bE}}= & \frac{1.20 \mathrm{E}_{\text {min }} \leftarrow 440000}{\mathrm{R}_{\mathrm{B}}{ }^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{e}=123.6 \\
& R_{B}=\sqrt{\frac{l_{e d}}{b^{2}}}=\sqrt{\frac{123.6(9.25)}{1.5^{2}}} \\
& \underbrace{c_{L}^{l}}_{L^{R_{B} 50}} \\
& R_{B}=\sqrt{508.1}=22.54<50 \\
& F_{b}^{*}=850\left(\begin{array}{ll}
{ }_{1}^{i_{F}} & c_{r} \\
c_{r} \\
\hline
\end{array} 1.15\right)=1075.25 \mathrm{p}_{51} \\
& F_{\text {bE }}=\frac{1.20 E_{\text {min }}^{\prime}}{R_{B}^{2}}=\frac{1.20(440000)}{22.54^{2}} \\
& F_{b E}=1039.1 \mathrm{psi} \\
& F_{b e / F_{b}}=\frac{1039.1}{1075.2}=0.9664 \\
& C_{L}=\frac{1+0.9664}{1.9}-\sqrt{\left[\frac{1+0.9664}{1.9}\right]^{2}-\frac{0.9664}{0.95}} \\
& C_{L}=1.0349-\sqrt{1.0349^{2}-1.0172} \\
& C_{i}=1.0349-0.23198
\end{aligned}
$$

Analysis Example

Determine the Factored Allowable Stress

F'b $=\mathrm{Fb}$ (adjustment factors)
$C_{D}=1.0 \mathrm{LL}$
$\mathrm{C}_{\mathrm{r}}=1.15$
Table 4.3.1 Applicability of Adjustment Factors for Saw Lumber
$\mathrm{C}_{\mathrm{F}}=1.1 \quad 2 \times 10$
$C_{M}=1.0$
$C_{L}=0.8029$

$F^{\prime} b=850(1.15 \times 1.1 \times 0.8029)=863.3 \mathrm{psi}$
$F^{\prime} v=180\left(C_{D} C_{M} C_{t} C_{i}\right)=180 p s i$

Analysis Example
Allowable Stresses
F'b $=863.3 \mathrm{psi}$
F'v $=180 \mathrm{psi}$

Design Procedure

Given: load, wood, span
Req'd: member size

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

2. Estimate allowable stresses
3. Solve $S=M / F_{b}$,
4. Choose a section from Table 1B

- Revise DL and F_{b} '

5. Check shear stress

- First for V max (easier)
- If that fails try V at d distance from support.
- If the section still fails, choose a new section with $A=1.5 \mathrm{~V} / F_{v}$,

6. Check deflection
7. Check bearing

Determine LL capacity
$M=F_{d}^{\prime} b S x$
$W_{D L}=13$ PSF $\frac{24}{12}=26$ PL F $\omega_{L L}=$?

$M=F_{!}^{\prime} S_{x}=063.3(21.39)=18466 \mathrm{~m}-16$

sctuse $V_{\text {max }}$ IL LL
$V=\frac{w l}{2}=\frac{(26+97.11) 10^{\prime}}{2}=615.5 \mathrm{LB}$

$$
f_{v}=\frac{3}{2} \frac{V}{A}=1.5 \frac{615.5}{13.88}=66.5 \mathrm{ps1}<180
$$

Arch 544
Slide 65 of 88

Design Example (joist)

Given: total load, wood, span Req'd: member size

1. Find Max Shear \& Moment

- Simple case - equations
- Complex case - diagrams

$$
\begin{array}{ll}
\text { GIVEN: } & F_{b}^{\prime}=1000 \mathrm{PSI} \\
& F_{V}=100 \\
& \text { PS II } \\
& \text { SPAN }=12! \\
& \square L L=80 \text { PLF } \\
\text { REQ'D: SECTION SIZE }
\end{array}
$$

Design Example

2. Estimate allowable stresses
(given in this example)
$\mathrm{F}_{\mathrm{b}}=1000 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}^{\prime}=100 \mathrm{psi}$
3. Solve $\mathrm{S}=\mathrm{M} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}$

$$
\begin{aligned}
& F_{b}^{\prime \prime}=M / S_{x}^{\prime *} \quad S_{x}=M / F_{b}^{\prime} \\
& S_{x}=\frac{1440(12) \cdot}{10000_{p i}}=17.28 \mathrm{~m}^{3}
\end{aligned}
$$

4. Choose a section from S table

- Revise DL and $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$

$$
\begin{aligned}
2 \times 10 \quad S_{x} & =21.39>17.28 \\
A & =13.88 \mathrm{~m}^{2}
\end{aligned}
$$

Design Example

$2 \times 10 \quad s_{x}=21.39>17.28$ $A=13.88 \mathrm{in}^{2}$
5. Check shear stress

- First for V max (easier)
- If that fails try V at d distance (remove load d from support)
- If the section still fails, choose a new section with $\mathrm{A}=1.5 \mathrm{~V} / \mathrm{F}_{\mathrm{v}}{ }^{\prime}$

$$
f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5\left(480^{*}\right)}{13.88 \mathrm{~m}^{2}}=51.87
$$

$$
51.87 \text { psi < } 100 \text { psi } \checkmark \text { ok }
$$

6. Check deflection
7. Check bearing

Design Example (joist)

Given: load, wood, span
Req'd: member size

Design Example

Determine allowable stresses

- F_{b} and F_{v} (from NDS)

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick) ${ }^{1,2,3}$
(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS										
Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		$\begin{gathered} \text { Bending } \\ \mathrm{F}_{\mathrm{b}} \\ \hline \end{gathered}$	Tension parallel to grain F_{t}	Shear parallel to grainF_{v}	Compression perpendicular to grain$F_{\mathrm{c} \perp}$	$\begin{gathered} \text { Compression } \\ \text { parallel } \\ \text { to grain } \\ F_{\mathrm{e}} \\ \hline \end{gathered}$	Modulus of Elasticity			
							E	$E_{\text {min }}$		
HEM-FIR										
Select Structural	2" \& wider	1,400	925	150	405	1,500	1,600,000	580,000	0.43	WCLIB WWPA
No. 1 \& Btr		1.100	725	150	405	1,350	1,500,000	550,000		
No. 1		975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		
No. 3		500	300	150	405	725	1,200,000	440,000		
Stud	2" \& wider	675	400	150	405	800	1,200,000	440,000		
Construction	2" - 4" wide	975	600	150	405	1,550	1,300,000	470,000		
Standard		550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		

Design Example

Determine allowable stresses

Nominal Size bxd	Standard Dressed Size (S4S) bxd in. x in.	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS	
			Section Modulus $S_{x x}$ in. ${ }^{3}$	Moment of Inertia $I_{x x}$ in. ${ }^{4}$	Section Modulus S_{yy} in. ${ }^{3}$	$\begin{gathered} \hline \text { Moment } \\ \text { of } \\ \text { Inertia } \\ \mathrm{I}_{\mathrm{yy}} \\ \text { in. }{ }^{4} \\ \hline \end{gathered}$
Boards ${ }^{1}$						
1×3	3/4 $\times 2-1 / 2$	1.875	0.781	0.977	0.234	0.088
1×4	$3 / 4 \times 3-1 / 2$	2.625	1.531	2.680	0.328	0.123
1×6	$3 / 4 \times 5-1 / 2$	4.125	3.781	10.40	0.516	0.193
1×8	3/4 $\times 7$-1/4	5.438	6.570	23.82	0.680	0.255
1×10	3/4 \times 9-1/4	6.938	10.70	49.47	0.867	0.325
1×12	3/4 $\times 11-1 / 4$	8.438	15.82	88.99	1.055	0.396
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)						
2×3	1-1/2 $\times 2-1 / 2$	3.750	1.56	1.953	0.938	0.703
2×4	1-1/2 $\times 3-1 / 2$	5.250	3.06	5.359	1.313	0.984
2×5	1-1/2 $\times 4-1 / 2$	6.750	5.06	11.39	1.688	1.266
2×6	1-1/2 $\times 5-1 / 2$	8.250	7.56	20.80	2.063	1.547
2×8	1-1/2 $\times 7-1 / 4$	10.88	13.14	47.63	2.719	2.039
2×10	1-1/2 \times 9-1/4	13.88	21.39	98.93	3.469	2.602
2×12	1-1/2 $\times 11-1 / 4$	16.88	31.64	178.0	4.219	3.164
2×14	1-1/2 $\times 13-1 / 4$	19.88	43.89	290.8	4.969	3.727
3×4	2-1/2 \times 3-1/2	8.75	5.10	8.932	3.646	4.557
3×5	2-1/2 $\times 4-1 / 2$	11.25	8.44	18.98	4.688	5.859
3×6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161
3×8	2-1/2 $\times 7$-1/4	18.13	21.90	79.39	7.552	9.440
3×10	2-1/2 \times 9-1/4	23.13	35.65	164.9	9.635	12.04
3×12	2-1/2 $\times 11-1 / 4$	28.13	52.73	296.6	11.72	14.65
3×14	2-1/2 $\times 13-1 / 4$	33.13	73.15	484.6	13.80	17.25
3×16	2-1/2 $\times 15-1 / 4$	38.13	96.90	738.9	15.89	19.86
4×4	3-1/2 \times 3-1/2	12.25	7.15	12.51	7.146	12.51
4×5	3-1/2 \times 4-1/2	15.75	11.81	26.58	9.188	16.08
4×6	$3-1 / 2 \times 5-1 / 2$	19.25	17.65	48.53	11.23	19.65
4×8	3-1/2 $\times 7-1 / 4$	25.38	30.66	111.1	14.80	25.90
4×10	3-1/2 \times 9-1/4	32.38	49.91	230.8	18.89	33.05
4×12	3-1/2 $\times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20
4×14	3-1/2 $\times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34
4×16	3-1/2 $\times 15-1 / 4$	53.38	135.66	1034	31.14	54.49

University of Michigan, TCAUP

Table 4A Adjustment Factors
Repetitive Member Factor, \mathbf{C}_{r}
Bending design values, F_{b}, for dimension lumber 2^{n} fact thick shall be multiplied by the repetitive member truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than $24^{\prime \prime}$ on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, C_{M}
When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service
factors from the following table: factors from the following table:
 be multiplied by the following size factors:

Size Factors, C_{8}					
Grades				F_{t}	$\mathrm{F}_{\text {c }}$
	Widh (depth)	Thickness (breadth)			
		$2{ }^{\text {" }}$ \& $3^{\prime \prime}$	4"		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.5	1.5	1.5	1.15
	5"	1.4	1.4	1.4	1.1
	$6^{\prime \prime}$	1.3	1.3	1.3	1.1
	$8{ }^{\prime \prime}$. 1.2	1.3	1.2	1.05
	$10^{\prime \prime}$.	1.1	1.2	1.1	1.0
	$\left\lvert\, \frac{12^{\prime \prime}}{14^{2}{ }^{2} \text { wider }}\right.$	1.0	1.1	1.0	1.0
		0.9	1.0	0.9	0.9
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05
	$5^{\prime \prime} \& 6^{\prime \prime}$	1.0	1.0	1.0	1.0
	$\frac{8^{\prime \prime} \& \text { wider }}{2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}}$	Use No 03 Grade tabulated design values and size factors			
Construction, Standard		Use No 3.3 Grad	1.0	1.0	1.0
Uility	$4^{4 \prime \prime}$	1.0	1.0	1.0	1.0
	$2^{\prime \prime} \& 3^{\prime \prime}$	0.4	-	0.4	0.6

Arch 544
Slide 72 of 88

Design Example

Determine allowable stresses.

Since the size is not known you have to skip C_{F} (or make a guess).

$$
\begin{aligned}
F_{b}^{\prime}= & F_{b}(\text { FAcToRs }) \\
= & 975\left(1.0 \times 1.15 \times 1.0 \times \frac{C_{F} ?}{1.0}\right) \approx 1121 \mathrm{psi} \\
& C_{D}^{\prime} \frac{C_{r}^{\prime}}{1.0} \\
F_{V}^{\prime}= & F_{V}\left(C_{D}, C_{N 1}, C_{t}, C_{i}\right) \\
= & 150(1.0 \times 1.0 \times 1.0 \times 1.0)=150 \mathrm{psi}
\end{aligned}
$$

Design Example

Determine moment from loading.

First find the uniform beam load, w, from the floor loading.

$$
\begin{aligned}
\underline{\omega}=(P S F) \frac{0 . C}{12} & =P L F \\
0 & =12 \\
& (7+35) \frac{12}{12}
\end{aligned}=42 \text { PLF }
$$

With the beam loading, calculate the maximum moment.

$$
M=\frac{w l^{2}}{8}=\frac{42\left(20^{\prime}\right)^{2}}{8}=2100^{1-k}
$$

Design Example

Estimate the Required Section Modulus.

$$
S_{x}=\frac{+1}{F_{b}^{\prime}}=\frac{2100(12)}{1121 p s 1}=22.47 \mathrm{~m}^{3}
$$

Compare this required $S x$ to the actual $S x$ of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

$$
\begin{aligned}
& \text { Frond TABLE 1B (NDS) } \\
& \text { SN } \\
& 2 \times 10 \quad \frac{21.39 \quad\left(C_{F}=i .1\right) \text { MIGHT WORK }}{2 \times 12 \quad 31.64 \quad\left(C_{F}=1.0\right)}
\end{aligned}
$$

Design Example

Choose a section and test it (by analysis with all factors including C_{F})

University of Michigan, TCAUP

保Y $\quad 2 \times 10 \quad C_{F}=1.1$
$F_{b}^{\prime}=975(1.15 \quad 1.1)=1233.3 \mathrm{psi}$
$f_{\text {. }}=\frac{1+1}{s_{x}}=\frac{2100(12)}{(21.39)}=1178$ psi <1233 psi $/$ ok
$f_{v}=\frac{3}{2} \frac{V}{A}=\frac{1.5(420)}{13.88}=45.39 \mathrm{psi}$ < 150 psi rok
\therefore USE 2×10

Design Example

Check Deflection

In this case LL only against IBC code limit of L/360
For short term load there is no creep factor Kor

TABLE 1604.3 DEFLECTION LIMITS ${ }^{a, b, c, ~} \mathrm{~h}, \mathrm{i}$

CONSTRUCTION	L	S or W^{f}	$D+L^{\mathrm{d}, \mathrm{g}}$
Roof members:			
Supporting plaster or stucco ceiling	$/ / 360$	$/ / 360$	$/ / 240$
Supporting nonplaster ceiling	$/ / 240$	$/ / 240$	$/ / 180$
Not supporting ceiling	$/ / 180$	$/ / 180$	$/ / 120$
Floor members	$/ / 360$	-	$/ / 240$
Exterior walls:			
With plaster or stucco finishes	-	$/ / 360$	-
With other brittle finishes	-	$/ / 240$	-
With flexible finishes	-	$/ / 120$	-
Interior partitions:			
With plaster or stucco finishes	$/ / 360$	-	-
With other brittle finishes	$/ / 240$	-	-
With flexible finishes	$/ / 120$	-	-
Farm buildings	-	-	$/ / 180$
Greenhouses	-	-	$/ / 120$

$$
L V=35 P S F=35 \text { PLF }
$$

$$
\Delta_{L L}=\frac{5 w l^{4}}{384 E I}=\frac{5(35)(20)^{4}(1728)}{384(150000)(98.93)}=0.849^{\prime \prime}
$$

$$
\Delta_{\text {LIMIT }} \frac{L}{360}=\frac{20^{\prime}(12)}{360}=0.667^{\prime \prime}
$$

$$
0.849>0.667 \therefore \text { FAILS }
$$

International Building Code (IBC)

Timber Beam Design

Given: load, wood, span
Req'd: member size (in this example both b and d)

Timber Beam Design

Find applied load and force

$H_{p}=\frac{P 8}{4}=\frac{11248(19)}{4}=53428$
$M_{\omega}=\frac{\omega l^{2}}{8}=$ \qquad

Timber Beam Design

Find allowable stress

From NDS Supplement:
Coast Sitka Spruce No2

$$
\begin{aligned}
& F_{b}=625 \mathrm{pst} \\
& F_{V}=115 \mathrm{pst} \\
& E=1200000 \mathrm{pst} \\
& E_{\text {min }}=440000 \mathrm{psl}
\end{aligned}
$$

Table 4D Reference Design Values for Visually Graded Timbers (5" x 5" and larger) ${ }^{1,3}$

(Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4D ADJUSTMENT FACTORS										
Species and commercial Grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		Bending F_{b}	Tension parallel to grain F_{t}	Shear parallel to grain Fv	Compression perpendicular to grain $F_{c \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$\mathrm{E}_{\text {min }}$		
COAST SITKA SPRUCE										
Select Structural		1,150	675	115	455	775	1,500,000	550,000	0.43	NLGA
No. 1	\times Beams and	950	475	115	455	650	1,500,000	550,000		
No. 2	Stringers	625	325	115	455	425	1,200,000	440,000		
	Posts and Timbers				455	825		550,000		
No. 1		875	575	115	455	725	1,500,000	550,000		
No. 2		525	350	115	455	500	1,200,000	440,000		

Timber Beam Design

$$
\text { TRY } 1
$$

Trial 1:
$F_{b}^{\prime} \approx F_{b}=625 p 51$.
choose Sx and size
$S x=M / F b$

$$
S_{x}=M / F=\frac{5342 g(12)}{625991}=1025 \mathrm{~m}^{3}
$$

$$
\frac{12 \times 24}{5 x}=
$$

$$
=1058 \mathrm{in}^{2}
$$

$$
\hat{A}=270 \mathrm{in}^{2}
$$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber (Cont.)												
Nominal Size bxd	Standard Dressed Size (S4S) $\begin{gathered} b \times d \\ \text { in. } \times \text { in. } \end{gathered}$	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Section } \\ \text { A } \\ \text { in. }^{2} \end{gathered}$	X-X AXIS		Y-Y AXIS		Approximate weight in pounds per linear foot (lbs/ft) of piece when density of wood equals:					
			Section	$\begin{gathered} \text { Moment } \\ \text { of } \end{gathered}$	Section	$\begin{gathered} \text { Moment } \\ \text { of } \end{gathered}$						
			$\begin{gathered} \text { Modulus } \\ \mathbf{S}_{x x} \\ \mathrm{in}^{3}{ }^{3} \\ \hline \end{gathered}$		$\begin{gathered} \text { Modulus } \\ \delta_{\text {yy }} \\ \text { in. }^{3} \\ \hline \end{gathered}$		$25 \mathrm{lbs} / \mathrm{ff}^{3}$	$30 \mathrm{lbs} / \mathrm{ft}^{3}$	$35 \mathrm{lbs} / \mathrm{ft}^{3}$	$40 \mathrm{lbs} / \mathrm{ft}^{3}$	$45 \mathrm{lbs} / \mathrm{ft}^{3}$	$50 \mathrm{lbs} / \mathrm{ft}^{3}$
Beams \&	Stringers (see	DS 4.1.3.3	3 and NDS	4.1.5.3)								
10×14	9-1/2 $\times 13-1 / 2$	128.3	288.6	1948	203.1	964.5	22.27	26.72	31.17	35.63	40.08	44.53
10×16	9-1/2 $\times 15-1 / 2$	147.3	380.4	2948	233.1	1107	25.56	30.68	35.79	40.90	46.02	51.13
10×18	9-1/2 $\times 17-1 / 2$	166.3	484.9	4243	263.2	1250	28.86	34.64	40.41	46.18	51.95	57.73
10×20	9-1/2 $\times 19-1 / 2$	185.3	602.1	5870	293.3	1393	32.16	38.59	45.03	51.46	57.89	64.32
10×22	9-1/2 $\times 21-1 / 2$	204.3	731.9	7868	323.4	1536	35.46	42.55	49.64	56.74	63.83	70.92
10×24	9-1/2 $\times 23-1 / 2$	223.3	874.4	10274	353.5	1679	38.76	46.51	54.26	62.01	69.77	77.52
12×16	11-1/2 $\times 15-1 / 2$	178.3	460.5	3569	341.6	1964	30.95	37.14	43.32	49.51	55.70	61.89
12×18	$11-1 / 2 \times 17-1 / 2$	201.3	587.0	5136	385.7	2218	34.94	41.93	48.91	55.90	62.89	69.88
12×20	$11-1 / 2 \times 19-1 / 2$	224.3	728.8	7106	429.8	2471	38.93	46.72	54.51	62.29	70.08	77.86
12×22	$11-1 / 2 \times 21-1 / 2$	247.3	886.0	9524	473.9	2725	42.93	51.51	60.10	68.68	77.27	85.85
TRY $-{ }^{\text {a }} \cdot 12 \times 24$	$11-1 / 2 \times 23-1 / 2$	270.3	1058	12437	518.0	2978	46.92	56.30	65.69	75.07	84.45	93.84
Re 14×18	13-1/2 $\times 17-1 / 2$	236.3	689.1	6029	531.6	3588	41.02	49.22	57.42	65.63	73.83	82.03
14×20	13-1/2 $\times 19-1 / 2$	263.3	855.6	8342	592.3	3998	45.70	54.84	63.98	73.13	82.27	91.41
\| 14×22	$13-1 / 2 \times 21-1 / 2$	290.3	1040	11181	653.1	4408	50.39	60.47	70.55	80.63	90.70	100.8
$\underline{14 \times 24}$	$13-1 / 2 \times 23-1 / 2$	317.3	1243	14600	713.8	4818	55.08	66.09	77.11	88.13	99.14	110.2

Timber Beam Design
Trial 1: 12×24 m.c. $<19 \%$ not flat use

Table 4D Adjustment Factors

Size Factor, C_{F}

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Size Factors, $\mathbf{C}_{\mathbf{F}}$			
24	$\mathrm{~F}_{\mathrm{t}}$	F_{c}	
Depth	F_{b}	1.0	1.0
$\mathrm{~d}>12^{\prime \prime}$	$\frac{(12 / \mathrm{d})^{1 / 9}}{1.0}$	1.0	1.0

Flat Use Factor, $\mathrm{C}_{\text {fu }}$
When members classified as Beams and Stringers* in Table 4D are subjected to loads applied to the wide face, tabulated design values shall be multiplied by the following flat use factors:

Flat Use Factor, C_{fu}			
Grade	F_{b}	E and $\mathrm{E}_{\text {wiu }}$	Other Properties
Select Structural	0.86	1.00	1.00
No.1	0.74	0.90	1.00
No.2	1.00	1.00	1.00

[^0]
Wet Service Factor, CM

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

Wet Service Factors, \mathbf{C}_{M}

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
	1.00	1.00	1.00	0.67	0.91

$$
c_{F}=(12 / 23.5)^{1 / 9}=0.928
$$

Timber Beam Design

Trial 1: 12×24
Adjustment Factors:

$$
\begin{aligned}
C_{L}: & e_{L .}, \\
l_{U} & =\frac{9.5^{\prime}}{114^{\prime \prime}} \quad \text { lU } / d_{23.5}=4.851 \\
& =110
\end{aligned}
$$

C_{L}

$$
\begin{aligned}
l_{e} & =1.11\left(l_{u}\right) \operatorname{TAB} 3.3 .3 \\
& =1.11(114)=126.5^{\prime \prime}
\end{aligned}
$$

Table 3.3.3
"Concentrated load at center with lateral support at center" $\mathrm{le}=1.11 \mathrm{lu}$

$$
\begin{aligned}
& R_{B}=\sqrt{\frac{l_{e d}}{b^{2}}}=4.74 \\
& \underline{F_{b E}}=\frac{1.2 E_{\min }}{R_{B}^{2}}=\frac{1.2(440000)}{4.74^{2}}=23482 \mathrm{ps1} \\
& F_{b}^{*}=F_{b}\left(C_{F}\right)=65 \quad(0.928)=580 \\
& \frac{F_{b C}}{F_{b}^{*}}=\underline{40.5} \frac{C_{C} 3.3-6}{\psi} \\
& C_{L}=0.999
\end{aligned}
$$

Timber Beam Design

Trial 1: $12 \times 24 \quad \mathrm{Sx}=1058 \mathrm{in}^{3} \quad \mathrm{~A}=270 \mathrm{in}^{2}$

$$
\begin{aligned}
& T_{R} Y 1 \text { CONT. } \\
& 12 \times 24 \\
& F_{b}^{\prime}=F_{b}\left(C_{D} C_{F}=0.928 \quad C_{L}\right)=0.999 \quad C_{D}=1.0 \\
& \frac{W_{\text {SELF }}}{}=D \frac{\text { AREA }}{144}=30^{\text {PCF }} \frac{270 \mathrm{in}^{2}}{144}=56.25 \mathrm{PLF} \\
& M_{W}=\frac{w l^{2}}{8}=\frac{56.25(19)^{2}}{8}=2538 \mathrm{FT}-L B \\
& M_{\text {TOTAL }}=M_{P}+M_{W}=\frac{53428}{1}+2538=55969 \mathrm{FT}-L B \\
& S_{\text {REQ }}^{\prime}=M / F=\frac{55969(12)}{579.3}=1159.4 \mathrm{~m}^{3}
\end{aligned}
$$

Timber Beam Design
Trial 2: $S x$ req'd $=\underline{1159}$ in 3

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber (Cont.)

$$
\text { try } 14 \times 24 S x=1243 \mathrm{in}^{3}
$$

Timber Beam Design
Trial 2: $14 \times 24\left(13 \frac{1}{2} \times 231 / 2\right) \quad S x=1243 \mathrm{in}^{3}$
revise adjustment factors:

$$
\begin{aligned}
C_{F}=(12 / 23.5)^{1 / 9}=0.928-\quad \quad \frac{C_{L}}{} l_{e} & =126.5^{\prime \prime} \\
R_{B} & =\sqrt{\frac{l_{e} d}{b^{2}}}=\sqrt{\frac{126.5(23.5)}{13.5^{2}}}=4.039 \\
F_{b E} & =\frac{1.2(440000)}{\frac{4.039^{2}}{2}}=32359.8 \mathrm{PSC} \\
F^{*} & =625(0.928)=580.0 \mathrm{ps} 1 \\
F_{D E} / F^{*} & =\frac{32359.8}{580}=55.79 \\
C_{L} & =0.999
\end{aligned}
$$

Timber Beam Design

Trial 2: $14 \times 24 \quad A=317.3 \mathrm{in}^{2} \quad S x=1243 \mathrm{in}^{3}$
check stresses:

$$
w=66.1 \text { PLF } \quad 14 \times 24 \quad A=317.3 \mathrm{in}^{2} \quad S_{x}=1242.6 \mathrm{im}^{3}
$$

TRY Z

$$
\therefore \text { USE } 14 \times 24
$$

Timber Beam Design

Trial 2: $14 \times 24 \quad \mathrm{x}=14600 \mathrm{in}^{4}$
DEFLECTION
check deflection:
assume 30% of LL is sustained
LoNG-TERM: $\omega_{D} P_{D} 30 \% P_{L}$

$$
\Delta_{\omega_{0}}=\frac{5 \omega_{0} l^{4}}{384 E I}=\frac{5(66.1)(19)^{4}(1728)}{384(1200000)(14600)}=0.011^{\prime \prime}
$$

see NDS 3.5
$\mathrm{Kcr}=1.5$ "seasoned lumber"

TABLE 1604.3 DEFLECTION LIMITS ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{i}, \mathrm{i}}$

$$
\Delta_{P_{D}}=\frac{P_{D} l^{3}}{48 E I}=\frac{2888(19)^{3}(1728)}{48(1200000)(14600)}=0.0407^{\prime \prime}
$$

$$
\Delta P_{C L 302}=\frac{0.3\left(P_{L}\right) l^{3}}{48 E I}=\frac{0.3(8360)(19)^{3}(1720)}{40^{3}(1200000)(14600)}=\frac{0.035^{\prime \prime}}{0.0867^{\prime \prime}}
$$

SHORT-TERM: $70 \% P_{L}$
$\Delta P_{L \text { 登汭 }}=\frac{0.7\left(P_{L}\right) l^{3}}{48 E I}=\frac{0.7(8360)(19)^{3}(1728)}{48(1200000)(14600)}=0.0825^{\prime \prime}$
Total deflection:

$$
\begin{aligned}
\Delta_{T} & =K_{c r} \Delta_{L T}+\Delta_{S T} \\
& =1.5(0.0867)+0.0825=0.213^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& F_{b}^{\prime}=625(1.0 \quad 0.9280 .999)=579.5 p 31
\end{aligned}
$$

$$
\begin{aligned}
& \text { cHECK SHEAR: } V_{\text {mAX }}=\frac{\omega l}{2}+\frac{P}{2}=\frac{66.1(19)}{2}+\frac{11248}{2}=6251.9 \mathrm{ls} \\
& f_{V}=\frac{3}{2} \frac{V}{A}=\frac{3}{2} \frac{6251.9}{317.3}=29.56 \mathrm{psi}<115=F_{V}^{\prime} \quad \sim
\end{aligned}
$$

[^0]: *"Beams and Stringers" are defined in NDS 4.1.3 (also see Table 1B).

