



# Allowable Stress Design by NDS Compression



University of Michigan, TCAUP

Wood Structures

Slide 5 of 88

### **Adjustment Factors**

| Table 4.3.1               | 4 | Applic               | pplicability of Adjustment Factors for Sawn Lumber |                               |                       |                |                 |                   |                          |                         |                           |                     |                            |                     |                    |
|---------------------------|---|----------------------|----------------------------------------------------|-------------------------------|-----------------------|----------------|-----------------|-------------------|--------------------------|-------------------------|---------------------------|---------------------|----------------------------|---------------------|--------------------|
|                           |   | ASD<br>only          |                                                    |                               |                       | AS             | SD an           | d LR              | FD                       |                         |                           |                     |                            | LRFI<br>only        | )                  |
|                           |   | Load Duration Factor | Wet Service Factor                                 | Temperature Factor            | Beam Stability Factor | Size Factor    | Flat Use Factor | Incising Factor   | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | H Format Conversion Factor | - Resistance Factor | Time Effect Factor |
| $F_b' = F_b$              | х | CD                   | CM                                                 | $\underline{\underline{C}}_t$ | $\tilde{C_L}$         | C <sub>F</sub> | Cfu             | $\underline{C}_i$ | Loist<br>Cr              | ¥ -                     | -                         | -                   | 2.54                       | 0.85                | λ                  |
| $F_t = F_t$               | х | CD                   | См                                                 | Ċt                            | -                     | CF             | -               | Ci                | -                        | -                       | -                         | -                   | 2.70                       | 0.80                | λ                  |
| $F_v = F_v$               | х | CD                   | См                                                 | Ct                            | -                     | -              | -               | Ci                | -                        | -                       | -                         | -                   | 2.88                       | 0.75                | λ                  |
| $F_c = F_c$               | х | CD                   | См                                                 | Ct                            | -                     | CF             | -               | Ci                | -                        | Ср                      | -                         | -                   | 2.40                       | 0.90                | λ                  |
| $F_{c\perp} = F_{c\perp}$ | х | -                    | $C_{M}$                                            | Ct                            | -                     | -              | -               | $C_i$             | -                        | -                       | -                         | $C_{\mathfrak{b}}$  | 1.67                       | 0.90                | -                  |
| E' = E                    | x | -                    | См                                                 | Ct                            | -                     | -              | -               | Ci                | -                        | -                       | -                         | -                   | -                          | -                   | -                  |
| $E_{\min} = E_{\min}$     | x | -                    | См                                                 | Ct                            | -                     | -              | -               | Ci                | -                        | -                       | Ст                        | -                   | 1.76                       | 0.85                | -                  |

# **Adjustment Factors**

Allowable Flexure Stress F<sub>b</sub>'

F<sub>b</sub> from tables determined by species and grade

$$\mathbf{F}_{b}' = \mathbf{F}_{b} \left( \mathbf{C}_{D} \, \mathbf{C}_{M} \, \mathbf{C}_{t} \, \mathbf{C}_{L} \, \mathbf{C}_{F} \, \mathbf{C}_{fu} \, \mathbf{C}_{i} \, \mathbf{C}_{r} \right)$$

Usage factors for flexure:  $C_{D}$  Load Duration Factor



**Table 2.3.2 Frequently Used Load** 

 $C_{D}$ 

0.9

1.0

1.15

1.25

1.6

Lr

Load Duration

Permanent PL

Ten years LL

Two months

Seven days

Ten minutes

Duration Factors, C<sub>D</sub><sup>1</sup>

Typical Design Loads

Occupancy Live Load

Wind/Earthquake Load

Construction Load

Dead Load

Snow Load

# **Adjustment Factors**

Allowable Flexure Stress F<sub>b</sub>'

F<sub>b</sub> from tables determined by species and grade

 ${\sf F}_{\sf b}{\,}' = {\sf F}_{\sf b}\,({\sf C}_{\sf D}\,{\sf C}_{\sf M}\,{\sf C}_{\sf t}\,{\sf C}_{\sf L}\,{\sf C}_{\sf F}\,{\sf C}_{\sf fu}\,{\sf C}_{\sf i}\,{\sf C}_{\sf r}\,)$ 

Usage factors for flexure:  $\mathbf{C}_{t}$  Temperature Factor

| [able 2.3.3 To                                             | emperature Fa            | ctor, Ct         |                          |                                   |
|------------------------------------------------------------|--------------------------|------------------|--------------------------|-----------------------------------|
| Reference Design<br>Values                                 | In-Service<br>Moisture - |                  | Ct                       |                                   |
| values                                                     | Conditions <sup>1</sup>  | T≤ <u>100</u> °F | 100°F <t≤<u>125°F</t≤<u> | 125°F <t≤150°f< th=""></t≤150°f<> |
| $F_t, E, E_{min}$                                          | Wet or Dry               | 1.0              | 0.9 •                    | 0.9                               |
| E E E and E                                                | Dry                      | 1.0              | 0.8                      | 0.7                               |
| $\underline{F}_{b}$ , $F_{v}$ , $F_{c}$ , and $F_{c\perp}$ | Wet                      | 1.0              | 0.7                      | (0.5)                             |

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

# **Adjustment Factors**

### Allowable Flexure Stress F<sub>b</sub>'

F<sub>b</sub> from NDS tables

 $\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left( \mathbf{C}_{\mathrm{D}} \ \mathbf{C}_{\mathrm{M}} \ \mathbf{C}_{\mathrm{t}} \ \mathbf{C}_{\mathrm{L}} \ \mathbf{C}_{\mathrm{F}} \ \mathbf{C}_{\mathrm{fu}} \ \mathbf{C}_{\mathrm{i}} \ \mathbf{C}_{\mathrm{r}} \right)$ 

### Usage factors for flexure: $C_M$ Moisture Factor

**C**<sub>F</sub> Size Factor

### Wet Service Factor, C<sub>M</sub>

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

|                          | W                      | et Service                | Factors,     | C <sub>M</sub> |                                             |
|--------------------------|------------------------|---------------------------|--------------|----------------|---------------------------------------------|
| F <sub>b</sub>           | $F_t$                  | $\mathbf{F}_{\mathbf{v}}$ | $F_{c\perp}$ | F <sub>c</sub> | $E \mbox{ and } E_{\mbox{\scriptsize min}}$ |
| 0.85*                    | 1.0                    | 0.97                      | 0.67         | 0.8**          | 0.9                                         |
| * when (E <sub>b</sub> ) | $(C_{\rm E}) \le 1.15$ | $0 \text{ psi}, C_M = 1.$ | 0            |                |                                             |

\*\* when  $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$ 

|                             |                 | Size Factors,                   | C <sub>F</sub> |                       |                |
|-----------------------------|-----------------|---------------------------------|----------------|-----------------------|----------------|
|                             |                 | F                               | b              | Ft                    | F <sub>c</sub> |
|                             |                 | Thickness                       | (breadth)      |                       |                |
| Grades                      | Width (depth)   | <b>(2)</b> & 3"                 | 4"             |                       |                |
|                             | (2", 3", & (4") | 1.5                             | 1.5            | 1.5                   | 1.15           |
| Select                      | 5"              | 1.4                             | 1.4            | 1.4                   | 1.1            |
| Structural,                 | 6"              | 1.3                             | 1.3            | 1.3                   | 1.1            |
| No.1 & Btr,                 | 8"              | 1.2                             | 1.3            | 1.2                   | 1.05           |
| No.1, No.2,                 | 10"             | 1.1                             | 1.2            | 1.1                   | 1.0            |
| No.3                        | 12"             | 1.0                             | 1.1            | 1.0                   | 1.0            |
| l l                         | 14" & wider     | 0.9                             | <u>1.0</u>     | 0.9                   | 0.9            |
|                             | 2", 3", & 4"    | 1.1                             | 1.1            | 1.1                   | 1.05           |
| Stud                        | 5" & 6"         | 1.0                             | 1.0            | 1.0                   | 1.0            |
| -                           | 8" & wider      | Use No.3 Grade tabulated design |                | values and size facto | ors            |
| • Construction,             | 2", 3", & 4"    | 1.0                             | 1.0            | 1.0                   | 1.0            |
| , Standard                  |                 |                                 |                |                       |                |
| Utility                     | 4"              | 1.0                             | 1.0            | 1.0                   | 1.0            |
|                             | 2" & 3"         | 0.4                             | _              | 0.4                   | 0.6            |
| iversity of Michigan, TCAUP | Arch 54         | 4                               |                | SI                    | ide 9 of 88    |

# **Adjustment Factors**

### Allowable Flexure Stress F<sub>b</sub>'

F<sub>b</sub> from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$ 

### Usage factors for flexure:

C<sub>fu</sub> Flat Use

**C**<sub>r</sub> Repetitive Member Factor

### Flat Use Factor, C<sub>fu</sub>

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value,  $F_b$ , shall also be permitted to be multiplied by the following flat use factors:

| Flat        | Flat Use Factors, C <sub>fu</sub> |      |  |  |  |  |  |  |  |  |
|-------------|-----------------------------------|------|--|--|--|--|--|--|--|--|
| Width       | Thickness (breadth)               |      |  |  |  |  |  |  |  |  |
| (depth)     | 2" & 3"                           | 4"   |  |  |  |  |  |  |  |  |
| 2" & 3"     | 1.0                               | _    |  |  |  |  |  |  |  |  |
| 4"          | 1.1                               | 1.0  |  |  |  |  |  |  |  |  |
| 5"          | 1.1                               | 1.05 |  |  |  |  |  |  |  |  |
| 6"          | 1.15                              | 1.05 |  |  |  |  |  |  |  |  |
| 8"          | 1.15.                             | 1.05 |  |  |  |  |  |  |  |  |
| 10" & wider | 1.2                               | 1.1  |  |  |  |  |  |  |  |  |

### **Repetitive Member Factor, C**<sub>r</sub>

Bending design values,  $F_b$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor,  $C_r = 1.15$ , when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

# **Adjustment Factors**

### Allowable Flexure Stress F<sub>b</sub>'

F<sub>b</sub> from tables determined by species and grade

$$\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left( \mathbf{C}_{\mathrm{D}} \ \mathbf{C}_{\mathrm{M}} \ \mathbf{C}_{\mathrm{t}} \ \mathbf{C}_{\mathrm{L}} \ \mathbf{C}_{\mathrm{F}} \ \mathbf{C}_{\mathrm{fu}} \ \mathbf{C}_{\mathrm{i}} \ \mathbf{C}_{\mathrm{r}} \right)$$

Usage factors for flexure:  $\mathbf{C}_i$  Incising Factor



| Table 4.3.8 Incising Factors, C | Т | able | 4.3.8 | Incising | Factors. | С |
|---------------------------------|---|------|-------|----------|----------|---|
|---------------------------------|---|------|-------|----------|----------|---|

| Design Value                  | Ci                   |  |
|-------------------------------|----------------------|--|
| E, E <sub>min</sub>           | 0.95                 |  |
| $F_b$ , $F_t$ , $F_c$ , $F_v$ | 0,80                 |  |
| F <sub>c1</sub>               | 0 <u>.80</u><br>1.00 |  |



University of Michigan, TCAUP

Arch 544

Slide 11 of 88

# **Adjustment Factors**

Allowable Flexure Stress F<sub>b</sub>'

F<sub>b</sub> from tables determined by species and grade

$$\mathbf{F}_{\mathrm{b}}{}^{\prime} = \mathbf{F}_{\mathrm{b}} \left( \mathbf{C}_{\mathrm{D}} \ \mathbf{C}_{\mathrm{M}} \ \mathbf{C}_{\mathrm{t}} \ \mathbf{C}_{\mathrm{L}} \ \mathbf{C}_{\mathrm{F}} \ \mathbf{C}_{\mathrm{fu}} \ \mathbf{C}_{\mathrm{i}} \ \mathbf{C}_{\mathrm{r}} \right)$$

Usage factors for flexure:  $\mathbf{C}_{\mathbf{L}}$  Beam Stability Factor

### 3.3.3 Beam Stability Factor, CL

3.3.3.1 When the depth of a bending member does not exceed its breadth,  $d \le b$ , no lateral support is required and  $C_L = 1.0$ .

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1,  $C_L = 1.0$ .

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation,  $C_L = 1.0$ .

3.3.3.4 Where the depth of a bending member exceeds its breadth, d > b, lateral support shall be provided at points of bearing to prevent rotation.

 $C_L = 1$ 

### 4.4.1 Stability of Bending Members

2x4 (a)  $d/b \le 2$ ; no lateral support shall be required.

- 2x6-8 (b) 2 < d/b ≤ 4; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- 2x10 (c) 4 < d/b ≤ 5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.</li>
- 2x12 (d)  $5 < d/b \le 6$ ; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- 2x14 (e)  $6 < d/b \le 7$ ; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.

| ΞL                                                                                         | Beam Depth/<br>Width Ratio      | Type of Lateral Bracing Required                       | Example                                          |
|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|--------------------------------------------------|
|                                                                                            | 2 to 1                          | None                                                   |                                                  |
| C <sub>L</sub> = 1.0<br>when bracing meets 4.4.1<br>for the depth/width ratio<br>Otherwise | <sup>3 to 1</sup><br>2x6<br>2x8 | <u>The ends</u> of the beam should be held in position | EIND BLOOKING                                    |
| C <sub>L</sub> < 1.0<br>calculate factor using<br>section 3.3.3                            | <sup>5 to 1</sup><br>2x10       | Hold compression edge<br>in line (continuously)        | NANLING<br>HERTHING/DECHING<br>JEIST OF BERM     |
|                                                                                            | <sup>6 to 1</sup><br>2x12       | Diagonal bridging should be used                       | SHEATHING/DEORING<br>BOIL, BRIDGING              |
|                                                                                            | <sup>7 to 1</sup><br>2x14       | Both edges of the beam should be held in line          | BAIPATINA<br>MILED SHEATHING<br>DECHING TO BOTTO |
|                                                                                            |                                 | Both edges of the beam should be held in line          |                                                  |
| University of Michigan, TCAUP                                                              |                                 | Arch 544                                               | Slide 13 of 88                                   |

# $C_{\mathsf{L}}$ Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, C\_L is calculated using equation 3.3-6

The maximum allowable slenderness,  $\rm R_{\rm B}$  is 50

| Table 3.3.3 Effective Length $(\ell_{\bullet})$                                                                 | for Bending Me                  | mbers                                  |                                          |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|------------------------------------------|
| Cantilever <sup>1</sup>                                                                                         | when $\ell_v/d < 7$             |                                        | when $\ell_u/d \ge 7$                    |
| Uniformly distributed load                                                                                      | $\ell_{e}$ =1.33 $\ell_{u}$     | at a second second second              | $\ell_{e}=0.90 \ \ell_{u}+3d$            |
| Concentrated load at unsupported end                                                                            | $\ell_{e}$ =1.87 $\ell_{u}$     |                                        | $\ell_e=1.44 \ \ell_u + 3d$              |
| Single Span Beam <sup>1,2</sup>                                                                                 | when $\ell_{\rm u}/{\rm d} < 7$ | 1                                      | when $\ell_u/d \ge 7$                    |
| Uniformly distributed load                                                                                      | $\ell_{\rm e}=2.06\ell_{\rm u}$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d |
| Concentrated load at center with no inter-<br>mediate lateral support                                           | $\ell_e$ =1.80 $\ell_u$         |                                        | $\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d |
| Concentrated load at center with lateral support at center                                                      |                                 | $\ell_{\rm e} = 1.11 \ \ell_{\rm u}$   | 5 es.                                    |
| Two equal concentrated loads at 1/3 points<br>with lateral support at 1/3 points                                |                                 | $\ell_{\rm e}=1.68 \ \ell_{\rm u}$     | × .                                      |
| Three equal concentrated loads at 1/4 points with lateral support at 1/4 points                                 | -                               | $\ell_{\rm e}$ =1.54 $\ell_{\rm u}$    |                                          |
| Four equal concentrated loads at 1/5 points<br>with lateral support at 1/5 points                               |                                 | $\ell_{e}$ =1.68 $\ell_{u}$            |                                          |
| Five equal concentrated loads at 1/6 points<br>with lateral support at 1/6 points                               |                                 | $\ell_{\rm e}$ =1.73 $\ell_{\rm u}$    |                                          |
| Six equal concentrated loads at 1/7 points with lateral support at 1/7 points                                   |                                 | $\ell_{e}$ =1.78 $\ell_{u}$            |                                          |
| Seven or more equal concentrated loads,<br>evenly spaced, with lateral support at points<br>of load application |                                 | ℓ <sub>e</sub> =1.84 ℓ <sub>u</sub>    |                                          |
| Equal end moments                                                                                               | 1                               | $\ell_e=1.84$ $\ell_u$                 | far in the second                        |

 $\begin{array}{l} \ell_e = 1.63 \ \ell_u + 3d \quad \text{when } 7 \leq \ell_v/d \leq 14.3 \\ \ell_e = 1.84 \ \ell_u \qquad \text{when } \ell_v/d > 14.3 \end{array} \\ 2. \ \text{Multiple span applications shall be based on table values or engineering analysis.} \end{array}$ 

3.3.3.6 The slenderness ratio,  $R_B$ , for bending members shall be calculated as follows:

3.3.3.7 The slenderness ratio for bending members,  $R_{\rm B},$  shall not exceed 50.  $\cdot$ 

3.3.3.8 The beam stability factor shall be calculated as follows:

$$\underline{C_{L}} = \frac{1 + (F_{be}/F_{b})}{1.9} - \sqrt{\left[\frac{1 + (F_{be}/F_{b})}{1.9}\right]^{2} - (F_{be}/F_{b})^{2}} (3.3-6)$$

where:

∲<u>ℓ</u>₀d √b²

R<sub>B</sub>

 $F_{b}^{*} = \text{reference bending design value multiplied by}$ all applicable adjustment factors except C<sub>fu</sub>, C<sub>V</sub> (when C<sub>V</sub> ≤ 1.0), and C<sub>L</sub> (see 2.3), psi  $F_{bE} = \frac{1.20 E_{min}}{R_{B}^{2}}$ 

# Adjustment Factors for Shear



# **Analysis Procedure**

Given: loading, member size, material and span. Req'd: Safe or Unsafe

### 1. Find Max Shear & Moment 🛩

- Simple case equations •
- Complex case diagrams •

### 2. Determine actual stresses 🛩

- f<sub>b</sub> = M/S
- f<sub>v</sub> = 1.5 V/A

### 3. Determine allowable stresses

- $F_b$  and  $F_v$  (from NDS) ອນເ-
- F<sub>b</sub>' = F<sub>b</sub> (usage factors)
- $F_v' = F_v$  (usage factors)

### 4. Check that actual $\leq$ allowable

- $f_b \leq F'_b$   $f_v \leq F'_v$  $\sim$
- 5. Check deflection <
- 6. Check bearing (F<sub>b</sub> = Reaction/A<sub>bearing</sub>)

|                     |                 |            | X-)              | ( AXIS          | Y-1              | AXIS            |
|---------------------|-----------------|------------|------------------|-----------------|------------------|-----------------|
|                     | Standard        | Area       |                  | Moment          |                  | Moment          |
| Nominal             | Dressed         | of         | Section          | of              | Section          | of              |
| Size                | Size (S4S)      | Section    | Modulus          | Inertia         | Modulus          | Inertia         |
| bxd                 | bxd             | A          | S <sub>xx</sub>  | I <sub>xx</sub> | S <sub>yy</sub>  | I <sub>vv</sub> |
|                     | in. x in.       | in.2       | in. <sup>3</sup> | in.⁴            | in. <sup>3</sup> | in.⁴            |
| Boards <sup>1</sup> |                 |            |                  |                 |                  |                 |
| 1x3                 | 3/4 x 2-1/2     | 1.875      | 0.781            | 0.977           | 0.234            | 0.088           |
| 1x4                 | 3/4 x 3-1/2     | 2.625      | 1.531            | 2.680           | 0.328            | 0.123           |
| 1 x 6               | 3/4 x 5-1/2     | 4.125      | 3.781            | 10.40           | 0.516            | 0.193           |
| 1 x 8               | 3/4 x 7-1/4     | 5.438      | 6.570            | 23.82           | 0.680            | 0.255           |
| 1 x 10              | 3/4 x 9-1/4     | 6.938      | 10.70            | 49.47           | 0.867            | 0.325           |
| 1 x 12              | 3/4 x 11-1/4    | 8.438      | 15.82            | 88.99           | 1.055            | 0.396           |
| Dimensio            | n Lumber (see N | DS 4.1.3.2 | 2) and Dec       | king (see       | NDS 4.1.3        | 3.5)            |
| 2 x 3               | 1-1/2 x 2-1/2   | 3.750      | 1.56             | 1.953           | 0.938            | 0.703           |
| 2 x 4               | 1-1/2 x 3-1/2   | 5.250      | 3.06             | 5.359           | 1.313            | 0.984           |
| 2 x 5               | 1-1/2 x 4-1/2   | 6.750      | 5.06             | 11.39           | 1.688            | 1.266           |
| 2 x 6               | 1-1/2 x 5-1/2   | 8.250      | 7.56             | 20.80           | 2.063            | 1.547           |
| 2 x 8               | 1-1/2 x 7-1/4   | 10.88      | 13.14            | 47.63           | 2.719            | 2.039           |
| 2 x 10              | 1-1/2 x 9-1/4   | 13.88      | 21.39            | 98.93           | 3.469            | 2.602           |
| 2 x 12              | 1-1/2 x 11-1/4  | 16.88      | 31.64            | 178.0           | 4.219            | 3.164           |
| 2 x 14              | 1-1/2 x 13-1/4  | 19.88      | 43.89            | 290.8           | 4.969            | 3.727           |
| 3 x 4               | 2-1/2 x 3-1/2   | 8.75       | 5.10             | 8.932           | 3.646            | 4.557           |
| 3 x 5               | 2-1/2 x 4-1/2   | 11.25      | 8.44             | 18.98           | 4.688            | 5.859           |
| 3 x 6               | 2-1/2 x 5-1/2   | 13.75      | 12.60            | 34.66           | 5.729            | 7.161           |
| 3 x 8               | 2-1/2 x 7-1/4   | 18.13      | 21.90            | 79.39           | 7.552            | 9.440           |
| 3 x 10              | 2-1/2 x 9-1/4   | 23.13      | 35.65            | 164.9           | 9.635            | 12.04           |
| 3 x 12              | 2-1/2 x 11-1/4  | 28.13      | 52.73            | 296.6           | 11.72            | 14.65           |
| 3 x 14              | 2-1/2 x 13-1/4  | 33.13      | 73.15            | 484.6           | 13.80            | 17.25           |
| 3 x 16              | 2-1/2 x 15-1/4  | 38.13      | 96.90            | 738.9           | 15.89            | 19.86           |
| 4 x 4               | 3-1/2 x 3-1/2   | 12.25      | 7.15             | 12.51           | 7.146            | 12.51           |
| 4 x 5               | 3-1/2 x 4-1/2   | 15.75      | 11.81            | 26.58           | 9.188            | 16.08           |
| 4 x 6               | 3-1/2 x 5-1/2   | 19.25      | 17.65            | 48.53           | 11.23            | 19.65           |
| 4 x 8               | 3-1/2 x 7-1/4   | 25.38      | 30.66            | 111.1           | 14.80            | 25.90           |
| 4 x 10              | 3-1/2 x 9-1/4   | 32.38      | 49.91            | 230.8           | 18.89            | 33.05           |
| 4 x 12              | 3-1/2 x 11-1/4  | 39.38      | 73.83            | 415.3           | 22.97            | 40.20           |
| 4 x 14              | 3-1/2 x 13-1/4  | 46.38      | 102.41           | 678.5           | 27.05            | 47.34           |
| 4 x 16              | 3-1/2 x 15-1/4  | 53.38      | 135.66           | 1034            | 31.14            | 54.49           |

from NDS 2012

### Given:

| DATASET: 1 -2-                 |                        |
|--------------------------------|------------------------|
| Span A                         | 17 FT                  |
| Span B                         | 11 FT                  |
| Joist O.C. Spacing             | 16 IN                  |
| Wood Density                   | 45 PCF                 |
| Joist Size                     | 2x10 NOMINAL           |
| Beam Size                      | 6x16 NOMINAL           |
| Floor DL (not including joist) | <u>3 PSF</u>           |
| Occupancy or Use               | assembly area - 60 rsa |



### Req'd: pass or fail for floor joist



University of Michigan, TCAUP

ASCE-7 Table 4.3-1: Live Load = 60 PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:



# Analysis Example (joist)

1. Find Max Shear & Moment on Joist

By equations:

Shear:

$$\frac{wl}{2} = \frac{88.336(11)}{2} = \frac{485.848}{2}$$
 lbs

Moment:

$$\frac{wl^2}{8} = \frac{88.336(11^2)}{8} = 1336.08$$
 ft-lbs



- 2. Determine actual stresses in joists
  - f<sub>b</sub> = M/S
  - f<sub>v</sub> = 1.5 V/A

$$f_{b} = \frac{M}{s_{x}} = \frac{1336' - (12)}{21.39 \text{ m}^{3}} = \frac{749.5}{749.5} \text{ Psi}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5(485.8)^{4}}{13.86 \text{ m}^{2}} = \frac{52.5}{751} \text{ Psi}$$

University of Michigan, TCAUP

Arch 544

Slide 19 of 88



# Table 4AReference Design Values for Visually Graded Dimension Lumber<br/>(2" - 4" thick)<sup>1,2,3</sup>

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

|                                 |                        |         | Design values in pounds per square inch (psi) |                               |                                          |                                     |           |              |                                  |                            |
|---------------------------------|------------------------|---------|-----------------------------------------------|-------------------------------|------------------------------------------|-------------------------------------|-----------|--------------|----------------------------------|----------------------------|
| Species and commercial<br>grade | Size<br>classification | Bending | Tension<br>parallel<br>to grain               | Shear<br>parallel<br>to grain | Compression<br>perpendicular<br>to grain | Compression<br>parallel<br>to grain | Modulus o | f Elasticity | Specific<br>Gravity <sup>4</sup> | Grading<br>Rules<br>Agency |
|                                 |                        |         | E                                             | Ft                            | Fv                                       | Fol                                 | F。        | E            | Emin                             | G                          |
| SPRUCE-PINE-FIR                 |                        |         |                                               |                               |                                          |                                     |           |              |                                  |                            |
| Select Structural               |                        | 1,250   | 700                                           | 135                           | 425                                      | 1,400                               | 1,500,000 | 550,000      |                                  |                            |
| No. 1/ No. 2                    | 2" & wider             | 875     | 450                                           | 135                           | 425                                      | 1,150                               | 1,400,000 | 510,000      |                                  | 1                          |
| No. 3                           |                        | 500     | 250                                           | 135                           | 425                                      | 650                                 | 1,200,000 | 440,000      |                                  | 1                          |
| Stud                            | 2" & wider             | 675     | 350                                           | 135                           | 425                                      | 725                                 | 1,200,000 | 440,000      | 0.42                             | NLGA                       |
| Construction                    |                        | 1,000   | 500                                           | 135                           | 425                                      | 1,400                               | 1,300,000 | 470,000      |                                  | 1.000                      |
| Standard                        | 2" - 4" wide           | 550     | 275                                           | 135                           | 425                                      | 1,150                               | 1,200,000 | 440,000      |                                  | 1                          |
| Utility                         |                        | 275     | 125                                           | 135                           | 425                                      | 750                                 | 1,100,000 | 400,000      |                                  | 1                          |

### USE WITH TABLE 4A ADJUSTMENT FACTORS

- 3. Determine allowable stresses NDS Supplement
  - Adjustment Factors



| Determine factors:           |                               |      |                                            |              |                                             |                | -               |                 |                          |                         |                           |                     |                          |                        |                    |
|------------------------------|-------------------------------|------|--------------------------------------------|--------------|---------------------------------------------|----------------|-----------------|-----------------|--------------------------|-------------------------|---------------------------|---------------------|--------------------------|------------------------|--------------------|
| CD = ? `<br>CM = 1<br>Ct = 1 | Table 4.3.1                   | 1 Ap | plica                                      | abilit       | y of                                        | Adju           | ıstm            | ent             | Fact                     | tors                    | for                       | Saw                 | n Li                     | umbo                   | er                 |
| CL = ?<br>CF = ?             |                               |      | SD<br>ily                                  | ASD and LRFD |                                             |                |                 |                 | LRFD<br>only             |                         |                           |                     |                          |                        |                    |
| Cfu = 1<br>Ci = 1<br>Cr = ?  |                               |      | Load Duration Factor<br>Wet Service Factor |              | <ul> <li>A Beam Stability Factor</li> </ul> | ?              | Flat Use Factor | Incising Factor | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | Format Conversion Factor | Resistance Factor      | Time Effect Factor |
|                              | $F_b' = F_b$                  | x C  | D S                                        | h Li         | CL                                          | C <sub>F</sub> | Cfu             | Qi              | Cr                       | -                       | -                         | -                   | K <sub>F</sub>           | фь                     | λ                  |
|                              | $\mathbf{F_v} = \mathbf{F_v}$ |      |                                            | M Ct         |                                             |                |                 |                 | -                        | -                       | -                         | -                   | $K_{\rm F}$              | $\varphi_{\mathbf{v}}$ | λ                  |
|                              |                               |      |                                            |              |                                             |                |                 |                 |                          |                         |                           |                     |                          |                        |                    |

University of Michigan, TCAUP

```
Arch 544
```

Slide 21 of 88

Time Effect Factor

λ λ

# Analysis Example

C<sub>D</sub> Load duration factor

Occupancy LL (10 years) = 1.0

# Table 2.3.2Frequently Used LoadDuration Factors, $C_p^1$

| Load Duration       | C <sub>D</sub> | Typical Design Loads |
|---------------------|----------------|----------------------|
| Permanent           | 0.9            | Dead Load            |
| Ten years           | (1.0)          | Occupancy Live Load  |
| Two months          | 1.15           | Snow Load            |
| Seven days          | 1.25           | Construction Load    |
| Ten minutes         | 1.6            | Wind/Earthquake Load |
| Impact <sup>2</sup> | 2.0            | Impact Load          |

### C<sub>F</sub> Size factor

|         |                           | Size Factors, C <sub>F</sub> |                |                  |                        |                |  |  |  |  |  |  |  |
|---------|---------------------------|------------------------------|----------------|------------------|------------------------|----------------|--|--|--|--|--|--|--|
| 2 x 10  |                           |                              | E              | -                | Ft                     | F <sub>c</sub> |  |  |  |  |  |  |  |
| use 1.1 |                           |                              | Thickness      |                  |                        |                |  |  |  |  |  |  |  |
|         | Grades                    | Width (depth)                | 2")& 3"        | 4"               |                        |                |  |  |  |  |  |  |  |
|         |                           | 2", 3", & 4"                 | 1.5            | 1.5              | 1.5                    | 1.15           |  |  |  |  |  |  |  |
|         | Select                    | 5"                           | 1.4            | 1.4              | 1.4                    | 1.1            |  |  |  |  |  |  |  |
|         | Structural,               | 6"                           | 1.3            | 1.3              | 1.3                    | 1.1            |  |  |  |  |  |  |  |
|         | No.1 & Btr,               | 8"                           | 1.2            | 1.3              | 1.2                    | 1.05           |  |  |  |  |  |  |  |
|         | No.1, No.2,               | (10)                         | 1.1            | 1.2              | 1.1                    | 1.0            |  |  |  |  |  |  |  |
|         | No.3                      | 12"                          | 1.0            | 1.1              | 1.0                    | 1.0            |  |  |  |  |  |  |  |
|         |                           | 14" & wider                  | 0.9            | 1.0              | 0.9                    | 0.9            |  |  |  |  |  |  |  |
|         |                           | 2", 3", & 4"                 | 1.1            | 1.1              | 1.1                    | 1.05           |  |  |  |  |  |  |  |
|         | Stud                      | 5" & 6"                      | 1.0            | 1.0              | 1.0                    | 1.0            |  |  |  |  |  |  |  |
|         |                           | 8" & wider                   | Use No.3 Grade | tabulated design | values and size factor | rs             |  |  |  |  |  |  |  |
|         | Construction,<br>Standard | 2", 3", & 4"                 | 1.0            | 1.0              | 1.0                    | 1.0            |  |  |  |  |  |  |  |
|         | Utility                   | 4"                           | 1.0            | 1.0              | 1.0                    | 1.0            |  |  |  |  |  |  |  |
|         |                           | 2" & 3"                      | 0.4            | _                | 0.4                    | 0.6            |  |  |  |  |  |  |  |

### C<sub>r</sub> Repetitive Member Factor

<u>16</u>" o.c. :  $C_r = 1.15$ 

Repetitive Member Factor, C<sub>r</sub>

Bending design values,  $F_b$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor,  $C_t = 1.15$ , when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than <u>24</u>" on center, are not less than <u>3 in</u> number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Arch 544

Slide 23 of 88

# Analysis Example

|                                                                            | Beam Depth/<br>Width Ratio      | Type of Lateral Bracing Required                | Example                                               |
|----------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|-------------------------------------------------------|
| C <sub>L</sub> Repetitive Member Factor                                    | 2 to 1                          | None                                            |                                                       |
| 2x10 w/ flooring: C <sub>L</sub> = 1.0<br>C <sub>L</sub> = 1.0             | <sup>3 to 1</sup><br>2x6<br>2x8 | The ends of the beam should be held in position | SIND DLANKING                                         |
| if depth/width ratio meets criteria in<br>4.4.1 C <sub>L</sub> = 1.0       | <sup>5 to 1</sup><br>→ 2x10     | Hold compression edge<br>in line (continuously) | Jeiot or Bram                                         |
| Otherwise:<br>C <sub>L</sub> < 1.0<br>calculate factor using section 3.3.3 | <sup>6 to 1</sup><br>2x12       | Diagonal bridging should be used                | SHEATHING/ DEORING                                    |
|                                                                            | <sup>7 to 1</sup><br>2x14       | Both edges of the beam should be held in line   | BANGANA<br>MULTOD SHEATHING OF<br>PROFING TO A BOTTOM |





With other brittle finishes

With flexible finishes Farm buildings

Greenhouses

\_

//180

//120

1/240

\_

6. Check bearing : 
$$F_{c\perp} < P/A_b$$

 $F_{c\perp}$  = 425 psi

P = R = 485.8 lbs  $A_b = 1.5" (1") = 1.5 in^2$ 

$$f_b = \frac{485.8}{1.5} = 323.8 \text{ psi} < 425 \text{ psi} \text{ ok}$$



### 3.10.4 Bearing Area Factor, Cb

Reference compression design values perpendicular to grain  $F_{c\perp}$  apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearings less than 6" in length and not nearer than 3" to the end of a member, the reference compression design value perpendicular to grain,  $F_{c\perp}$ , shall be permitted to be multiplied by the following bearing area factor,  $C_b$ :

$$C_{b} = \frac{\ell_{b} + 0.375}{\ell_{b}}$$
(3.10-2)

where:

 $\ell_{b}$  = bearing length measured parallel to grain, in.

Equation 3.10-2 gives the following bearing area factors,  $C_b$ , for the indicated bearing length on such small areas as plates and washers:

| Table 3.10.4                   |      |      | В    | earing | Area | Facto | ors, Co    |
|--------------------------------|------|------|------|--------|------|-------|------------|
| $\overline{\ell_{\mathrm{b}}}$ | 0.5" | 1"   | 1.5" | 2"     | 3"   | 4"    | 6" or more |
| $C_{b}$                        | 1.75 | 1.38 | 1.25 | 1.19   | 1.13 | 1.10  | 1.00       |

For round bearing areas such as washers, the bearing length,  $\ell_{\rm b},$  shall be equal to the diameter.

University of Michigan, TCAUP

Arch 544

Slide 27 of 88

# Design Procedure – Joist or Rafter

Given: loading criteria, wood, span, <u>size</u> Req'd: controlling load, <u>o.c. spacing</u>

- 1. Determine each load 1
  - check applicable load cases
  - · determine loads
  - choose controlling load case
- 2. Find Max Shear & Moment
  - assume o.c. spacing = 12"
- 3. Calculate actual stresses
- 4. Calculate allowable stresses -
  - · find applicable factors
- 5. Choose spacing ~
  - determine utilization ratio: fb/Fb
  - divide o.c. spacing by the ratio
  - round down to modular spacing (12, 16 or 24)
- 6. Check shear stress
- 7. Check deflection
- 8. Check bearing





# Analysis Example (rafter)

### Roof Live Load

- Minimum L<sub>r</sub> between 12 PSF and 20 PSF
- $L_r = 20 R_1 R_2$
- See 4.9.1

$$\begin{array}{c} \overbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} } \\ R_1 = 1.2 - 0.001 A_t \\ 0.6 \end{array} \qquad \begin{array}{c} \text{for } A_t \leq 200 \ \text{ft}^2(18.58 \ \text{m}^2) \\ \text{for } 200 \ \text{ft}^2 < A_t < 600 \ \text{ft}^2 \\ \text{for } A_t \geq 600 \ \text{ft}^2(55.74 \ \text{m}^2) \end{array} }$$

where A<sub>t</sub> = tributary area in ft<sup>2</sup> (m<sup>2</sup>) supported by any structural member and

$$R_{2} = 1.2 - 0.05 F$$
 for F ₹4  
0.6 for 4 < F < 12  
for F ≥ 12

where, for a pitched roof, F = number of inches of rise per ft.

for an arch or dome, F = rise-to-span ratio multiplied by 32.



## Design Example (rafter)

 $p_{g}$  - flat roof snow load = 50 psf  $p_{f}$  = 0.7 C<sub>e</sub> C<sub>t</sub> I<sub>s</sub> p<sub>g</sub> • Eq. 7.3-1

### Low Slope Roofs

- Monoslope, hip or gable < 15°
- 4/12 = 18.4°

### Minimum for Low Slope Roofs

- Minimum where  $p_q \leq 20 = I_s p_q PSF$
- Minimum where  $p_q > 20 = I_s 20 PSF$

#### 7.3 FLAT ROOF SNOW LOADS, pf

The flat roof snow load,  $p_{f}$ , shall be calculated in lb/ft<sup>2</sup> (kN/m<sup>2</sup>) using the following formula:

$$p_f = 0.7C_e C_t I_s p_g$$
 (7.3-1)

**7.3.1 Exposure Factor,**  $C_e$ The value for  $C_e$  shall be determined from Table 7-2.

7.3.2 Thermal Factor, C<sub>t</sub> The value for C<sub>t</sub> shall be determined from Table 7-3.

#### 7.3.3 Importance Factor, Is

The value for  $I_s$  shall be determined from Table 1.5-2 based on the Risk Category from Table 1.5-1.

**7.3.4 Minimum Snow Load for Low-Slope Roofs**,  $p_m$  A minimum roof snow load,  $p_m$ , shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. The minimum roof snow load for low-slope roofs shall be obtained using the following formula:

Where  $p_g$  is 20 lb/ft<sup>2</sup> (0.96 kN/m<sup>2</sup>) or less:

 $p_m = I_s p_g$  (Importance Factor times  $p_g$ )

Where  $p_g$  exceeds 20 lb/ft<sup>2</sup> (0.96 kN/m<sup>2</sup>):

 $p_m = 20 (I_s)$  (20 lb/ft<sup>2</sup> times Importance Factor)

This minimum roof snow load is a separate uniform load case. It need not be used in determining

University of Michigan, TCAUP

Arch 544

Slide 31 of 88

# Design Example (rafter)

### C<sub>e</sub> – Exposure Factor

- Table 7-2
- Terrain Category C
- · Roof Exposure "Partially Exposed"
- Ce = 1.0

### Table 7-2 Exposure Factor, Ce

|                                                                                         | Exposure of Roof <sup>a</sup> |                   |           |  |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------|--|--|--|--|
| Terrain Category                                                                        | Fully Exposed                 | Partially Exposed | Sheltered |  |  |  |  |
| B (see Section 26.7)                                                                    | 0.9                           | 1.0               | 1.2       |  |  |  |  |
| C (see Section 26.7)                                                                    | 0.9                           | 1.0               | 1.1       |  |  |  |  |
| D (see Section 26.7)                                                                    | 0.8                           | 0.9               | 1.0       |  |  |  |  |
| Above the treeline in windswept mountainous areas.                                      | 0.7                           | 0.8               | N/A       |  |  |  |  |
| In Alaska, in areas where trees do not exist within a 2-mile (3-km) radius of the site. | 0.7                           | 0.8               | N/A       |  |  |  |  |

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.

<sup>*a*</sup>Definitions: Partially Exposed: All roofs except as indicated in the following text. Fully Exposed: Roofs exposed on all sides with no shelter<sup>*b*</sup> afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load  $(h_b)$ , or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.

<sup>b</sup>Obstructions within a distance of  $10h_o$  provide "shelter," where  $h_o$  is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

# Design Example (rafter)

### C<sub>t</sub> – Thermal Factor

- Table 7.3-2
- given = 1.0

# $I_{s}$ – Importance Factor

- Table 1.5-2
- given category II): Is = 1.0

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

| Risk<br>Category from<br>Table 1.5-1 | <u>Snow</u><br>Importance<br>Factor, I <sub>s</sub> | Ice Importance<br>Factor—<br>Thickness, I <sub>i</sub> | lce Importance<br>Factor—Wind,<br>I <sub>w</sub> | Seismic<br>Importance<br>Factor, I <sub>e</sub> |  |
|--------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--|
| I                                    | 0.80                                                | 0.80                                                   | 1.00                                             | 1.00                                            |  |
| п                                    | 1.00                                                | 1.00                                                   | 1.00                                             | 1.00                                            |  |
| ш                                    | 1.10                                                | 1.15                                                   | 1.00                                             | 1.25                                            |  |
| IV                                   | 1.20                                                | 1.25                                                   | 1.00                                             | 1.50                                            |  |

Note: The component importance factor,  $I_p$ , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

University of Michigan, TCAUP

Table 7.3-2 Thermal Factor, C<sub>t</sub>

| Thermal Condition <sup>a</sup>                                                                                                                                                                                                                             | C,   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| All structures except as indicated below                                                                                                                                                                                                                   | 1.0  |
| Structures kept just above freezing and others with cold,<br>ventilated roofs in which the thermal resistance (R-value)<br>between the ventilated space and the heated space exceeds<br>$25^{\circ}F \times h \times ft^2/Btu$ (4.4 K × m <sup>2</sup> /W) | 1.1  |
| Unheated and open air structures                                                                                                                                                                                                                           | 1.2  |
| Freezer building                                                                                                                                                                                                                                           | 1.3  |
| Continuously heated greenhouses <sup>b</sup> with a roof having a thermal resistance (R-value) less than $2.0^{\circ}F \times h \times ft^2/Btu$<br>(0.4 K × m <sup>2</sup> /W)                                                                            | 0.85 |

<sup>a</sup>These conditions shall be representative of the anticipated conditions during

These conditions shall be representative of the anticipated conditions during winters for the life of the structure. <sup>6</sup>Greenhouses with a constantly maintained interior temperature of 50°F (10°C) or more at any point 3 ft (0.9 m) above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure.

Arch 544

Slide 33 of 88

# Design Example (rafter)

- p<sub>f</sub> flat roof snow load
- $p_f = 0.7 C_e C_t I_s p_g$ 0.7 1.0 1.0 1.0 50 = <u>35 psf</u>
- p<sub>s</sub> sloped roof snow load
- $p_s = C_s p_f$ 
  - Eq. 7.4-1

### C<sub>s</sub> – Roof Slope Factor

- Figure 7-2
- $C_1 = C_t$
- · Equations given in commentary C7.4
- · given roof surface "not slippery"
- Cs = 1.0 🗸





7-2a: Warm roofs with C1<1.0



3. Determine actual stresses

• f<sub>b</sub> = M/S

• f<sub>v</sub> = 1.5 V/A

$$f_{b} = \frac{M}{5_{x}} = \frac{1614^{1.4}(12)}{21.39m^{3}} = \frac{905.4}{905.4}$$
  
$$f_{v} = \frac{3}{2}\frac{v}{A} = \frac{1.5(430.3)}{13.88} = 46.5$$

University of Michigan, TCAUP

Arch 544

Slide 37 of 88

# Species and Grade

- 4. Determine allowable stresses NDS Supplement
  - F<sub>b</sub> = 850 psi
  - F<sub>v</sub> = 150 psi

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

#### Table 4A (Cont.) Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)<sup>1,2,3</sup>

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

|                              |                        | USE     | WITH TAE                        | BLE 4A A                      | DJUSTMENT                                | FACTORS                             |           |              |                                  |                            |
|------------------------------|------------------------|---------|---------------------------------|-------------------------------|------------------------------------------|-------------------------------------|-----------|--------------|----------------------------------|----------------------------|
|                              |                        |         |                                 | Design va                     | alues in pounds p                        | er square inch (p                   | osi)      |              |                                  |                            |
| Species and commercial grade | Size<br>classification | Bending | Tension<br>parallel<br>to grain | Shear<br>parallel<br>to grain | Compression<br>perpendicular<br>to grain | Compression<br>parallel<br>to grain | Modulus o | f Elasticity | Specific<br>Gravity <sup>4</sup> | Grading<br>Rules<br>Agency |
|                              |                        | F₀      | F,                              | F,                            | F <sub>e⊥</sub>                          | F。                                  | E         | Emin         | G                                |                            |
| HEM-FIR                      |                        |         |                                 |                               |                                          |                                     |           |              |                                  |                            |
| Select Structural            |                        | 1,400   | 925                             | 150                           | 405                                      | 1,500                               | 1,600,000 | 580,000      |                                  |                            |
| No. 1 & Btr                  |                        | 1,100   | 725                             | 150                           | 405                                      | 1,350                               | 1,500,000 | 550,000      | I                                |                            |
| No. 1                        | 2" & wider             | 975     | 625                             | 150                           | 405                                      | 1,350                               | 1,500,000 | 550,000      |                                  |                            |
| No. 2                        |                        | 850     | 525                             | 150                           | 405                                      | 1,300                               | 1,300,000 | 470,000      |                                  | WCLIB                      |
| No. 3                        |                        | 500     | 300                             | 150                           | 405                                      | 725                                 | 1,200,000 | 440,000      | 0.43                             | WWPA                       |
| Stud                         | 2" & wider             | 675     | 400                             | 150                           | 405                                      | 800                                 | 1,200,000 | 440,000      |                                  | WWWPA                      |
| Construction                 |                        | 975     | 600                             | 150                           | 405                                      | 1,550                               | 1,300,000 | 470,000      | 1                                |                            |
| Standard                     | 2" - 4" wide           | 550     | 325                             | 150                           | 405                                      | 1,300                               | 1,200,000 | 440,000      |                                  |                            |
| Utility                      |                        | 250     | 150                             | 150                           | 405                                      | 850                                 | 1,100,000 | 400,000      |                                  |                            |

- 4. Determine allowable stresses - NDS Supplement
  - Adjustment Factors •

### Determine factors:

|              | Table 4.3.1 Applicability of Adjustment Factors for Sawn |                      |                    |                    |                       |             |                   | LRFD            |                          |                         |                           |                     |                          |                   |                      |
|--------------|----------------------------------------------------------|----------------------|--------------------|--------------------|-----------------------|-------------|-------------------|-----------------|--------------------------|-------------------------|---------------------------|---------------------|--------------------------|-------------------|----------------------|
|              |                                                          | only                 |                    | ASD and LRFD       |                       |             |                   |                 |                          | only                    |                           |                     |                          |                   |                      |
|              |                                                          | Load Duration Factor | Wet Service Factor | Temperature Factor | Beam Stability Factor | Size Factor | Flat Use Factor   | Incising Factor | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | Format Conversion Factor | Resistance Factor | Time Differet Footon |
| $F_b' = F_b$ | x                                                        | CD                   | См                 | Ct                 | $C_L$                 | $C_{\rm F}$ | $C_{\mathrm{fu}}$ | $C_i$           | $C_{r}$                  | -                       | -                         | -                   | K <sub>F</sub>           | фь                | 2                    |
| $F_v = F_v$  | x                                                        | CD                   | См                 | $C_t$              | -                     | -           | -                 | Ci              | -                        | -                       | -                         | -                   | K <sub>F</sub>           | $\phi_{\rm v}$    | 2                    |

University of Michigan, TCAUP

```
Arch 544
```

Slide 39 of 88

# Analysis Example

C<sub>D</sub> Load duration factor

Snow Load (2 months) = 1.15

# Table 2.3.2 Frequently Used Load<br/>Duration Factors, $C_p^1$

| Load Duration       | CD   | Typical Design Loads |
|---------------------|------|----------------------|
| Permanent           | 0.9  | Dead Load            |
| Ten years           | 1.0  | Occupancy Live Load  |
| Two months          | 1.15 | Snow Load            |
| Seven days          | 1.25 | Construction Load    |
| Ten minutes         | 1.6  | Wind/Earthquake Load |
| Impact <sup>2</sup> | 2.0  | Impact Load          |

### C<sub>F</sub> Size factor

| 0 10              |               |               | Size Factors,  | C <sub>F</sub>   |                       |      |
|-------------------|---------------|---------------|----------------|------------------|-----------------------|------|
| <u>2 x 10</u>     | -             |               | F              | b                | Ft                    | Fc   |
| 2 x 10<br>use 1.1 |               |               | Thickness      | (breadth)        |                       |      |
|                   | Grades        | Width (depth) | 2" & 3"        | 4"               |                       |      |
|                   |               | 2", 3", & 4"  | 1.5            | 1.5              | 1.5                   | 1.15 |
|                   | Select        | 5"            | 1.4            | 1.4              | 1.4                   | 1.1  |
|                   | Structural,   | 6"            | 1.3            | 1.3              | 1.3                   | 1.1  |
|                   | No.1 & Btr,   | 8"            | 1.2            | 1.3              | 1.2                   | 1.05 |
|                   | No.1, No.2,   | 10"           | 1.1            | 1.2              | 1.1                   | 1.0  |
|                   | No.3          | 12"           | 1.0            | 1.1              | 1.0                   | 1.0  |
|                   |               | 14" & wider   | 0.9            | 1.0              | 0.9                   | 0.9  |
|                   |               | 2", 3", & 4"  | 1.1            | 1.1              | 1.1                   | 1.05 |
|                   | Stud          | 5" & 6"       | 1.0            | 1.0              | 1.0                   | 1.0  |
|                   |               | 8" & wider    | Use No.3 Grade | tabulated design | values and size facto | ors  |
|                   | Construction, | 2", 3", & 4"  | 1.0            | 1.0              | 1.0                   | 1.0  |
|                   | Standard      |               |                |                  |                       |      |
|                   | Utility       | 4"            | 1.0            | 1.0              | 1.0                   | 1.0  |
|                   |               | 2" & 3"       | 0.4            | _                | 0.4                   | 0.6  |

### C<sub>r</sub> Repetitive Member Factor

12" o.c. : C<sub>r</sub> = 1.15

Repetitive Member Factor, C<sub>r</sub>

Bending design values,  $F_b$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor,  $C_r = 1.15$ , when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Arch 544

Slide 41 of 88

# Analysis Example

|                                                                   | Beam Depth/<br>Width Ratio      | Type of Lateral Bracing Required                | Example                                                                  |
|-------------------------------------------------------------------|---------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|
| C <sub>L</sub> Repetitive Member Factor                           | 2 to 1                          | None                                            |                                                                          |
| 2x10 w/ flooring: $C_L = 1.0$<br>$C_L = 1.0$                      | <sup>3 to 1</sup><br>2x6<br>2x8 | The ends of the beam should be held in position | BIND BLOCKING                                                            |
| if depth/width ratio meets criteria in<br>4.4.1 $C_L = 1.0$       | <sup>5 to 1</sup><br>2x10       | Hold compression edge<br>in line (continuously) | NAILIN'S<br>OHEATHING/JEOPING<br>Jeigt of BEAM                           |
| Otherwise:<br>$C_L < 1.0$<br>calculate factor using section 3.3.3 | <sup>6 to 1</sup><br>2x12       | Diagonal bridging should be used                | SHBATHING/ DBOMING<br>JUNIT                                              |
|                                                                   | <sup>7 to 1</sup><br>2x14       | Both edges of the beam should be held in line   | HUISD SHEATHING OF<br>PROVING TO SHEATHING OF<br>PROVING TO SHEATHING OF |

- 4. Determine allowable stresses
  - $F_{b}' = F_{b} (C_{D})(C_{L})(C_{F})(C_{r})$
  - F<sub>b</sub>' = 850 (1.15) (1.0) (1.1) (1.0) (1.15) = 1236 psi
  - $F_{v}' = F_{v}(C_{D})$
  - F<sub>v</sub>' = 150 (1.15) = 172.5 psi
- 5. Check that actual  $\leq$  allowable
  - f<sub>b</sub> < F'<sub>b</sub>
  - f<sub>v</sub> < F'<sub>v</sub>
- 6. Utilization Ratio
  - 905.4/1236 = 0.732
  - <u>12</u>" o.c. / <u>0.73</u>2 = 16.38
  - try 2x10 at <u>16</u>" o.c.
  - f<sub>b</sub> at 16" o.c.= <u>905</u>.4 (16/12) = <u>1207</u> psi
- 7. Check deflection
- 8. Check bearing ( $F_{cp} = R/A_b$ )

University of Michigan, TCAUP

```
Arch 544
```

Slide 43 of 88

# Analysis Procedure

Given: <u>member size</u>, material and span. Req'd: Max. Safe Load (**capacity**)

- 1. Assume f = F
  - Maximum actual = allowable stress
- 2. Solve stress equations for force
  - M = F<sub>b</sub> S
  - V = 0.66 F<sub>v</sub> A
- 3. Use maximum forces to find loads
  - Back calculate a load from forces
  - Assume moment controls
- 4. Check Shear
  - Use load found is step 3 to check shear stress.
  - If it fails (fv > F'v), then find load based on shear.
- 5. Check deflection
- 6. Check bearing

|                     |                 |                  | X-)              | ( AXIS          | Y-1              | AXIS    |  |
|---------------------|-----------------|------------------|------------------|-----------------|------------------|---------|--|
|                     | Standard        | Area             |                  | Moment          |                  | Moment  |  |
| Nominal             | Dressed         | of               | Section          | of              | Section          | of      |  |
| Size                | Size (S4S)      | Section          | Modulus          | Inertia         | Modulus          | Inertia |  |
| b x d               | bxd             | A                | S <sub>xx</sub>  | I <sub>xx</sub> | S <sub>yy</sub>  | lyy     |  |
|                     | in. x in.       | in. <sup>2</sup> | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | in.4    |  |
| Boards <sup>1</sup> |                 |                  |                  |                 |                  |         |  |
| 1 x 3               | 3/4 x 2-1/2     | 1.875            | 0.781            | 0.977           | 0.234            | 0.088   |  |
| 1 x 4               | 3/4 x 3-1/2     | 2.625            | 1.531            | 2.680           | 0.328            | 0.123   |  |
| 1 x 6               | 3/4 x 5-1/2     | 4.125            | 3.781            | 10.40           | 0.516            | 0.193   |  |
| 1 x 8               | 3/4 x 7-1/4     | 5.438            | 6.570            | 23.82           | 0.680            | 0.255   |  |
| 1 x 10              | 3/4 x 9-1/4     | 6.938            | 10.70            | 49.47           | 0.867            | 0.325   |  |
| 1 x 12              | 3/4 x 11-1/4    | 8.438            | 15.82            | 88.99           | 1.055            | 0.396   |  |
| Dimensio            | n Lumber (see N | IDS 4.1.3.2      | 2) and Dec       | king (see       | NDS 4.1.3        | 3.5)    |  |
| 2 x 3               | 1-1/2 x 2-1/2   | 3.750            | 1.56             | 1.953           | 0.938            | 0.703   |  |
| 2 x 4               | 1-1/2 x 3-1/2   | 5.250            | 3.06             | 5.359           | 1.313            | 0.984   |  |
| 2 x 5               | 1-1/2 x 4-1/2   | 6.750            | 5.06             | 11.39           | 1.688            | 1.266   |  |
| 2 x 6               | 1-1/2 x 5-1/2   | 8.250            | 7.56             | 20.80           | 2.063            | 1.547   |  |
| 2 x 8               | 1-1/2 x 7-1/4   | 10.88            | 13.14            | 47.63           | 2.719            | 2.039   |  |
| 2 x 10              | 1-1/2 x 9-1/4   | 13.88            | 21.39            | 98.93           | 3.469            | 2.602   |  |
| 2 x 12              | 1-1/2 x 11-1/4  | 16.88            | 31.64            | 178.0           | 4.219            | 3.164   |  |
| 2 x 14              | 1-1/2 x 13-1/4  | 19.88            | 43.89            | 290.8           | 4.969            | 3.727   |  |
| 3 x 4               | 2-1/2 x 3-1/2   | 8.75             | 5.10             | 8.932           | 3.646            | 4.557   |  |
| 3 x 5               | 2-1/2 x 4-1/2   | 11.25            | 8.44             | 18.98           | 4.688            | 5.859   |  |
| 3 x 6               | 2-1/2 x 5-1/2   | 13.75            | 12.60            | 34.66           | 5.729            | 7.161   |  |
| 3 x 8               | 2-1/2 x 7-1/4   | 18.13            | 21.90            | 79.39           | 7.552            | 9.440   |  |
| 3 x 10              | 2-1/2 x 9-1/4   | 23.13            | 35.65            | 164.9           | 9.635            | 12.04   |  |
| 3 x 12              | 2-1/2 x 11-1/4  | 28.13            | 52.73            | 296.6           | 11.72            | 14.65   |  |
| 3 x 14              | 2-1/2 x 13-1/4  | 33.13            | 73.15            | 484.6           | 13.80            | 17.25   |  |
| 3 x 16              | 2-1/2 x 15-1/4  | 38.13            | 96.90            | 738.9           | 15.89            | 19.86   |  |
| 4 x 4               | 3-1/2 x 3-1/2   | 12.25            | 7.15             | 12.51           | 7.146            | 12.51   |  |
| 4 x 5               | 3-1/2 x 4-1/2   | 15.75            | 11.81            | 26.58           | 9.188            | 16.08   |  |
| 4 x 6               | 3-1/2 x 5-1/2   | 19.25            | 17.65            | 48.53           | 11.23            | 19.65   |  |
| 4 x 8               | 3-1/2 x 7-1/4   | 25.38            | 30.66            | 111.1           | 14.80            | 25.90   |  |
| 4 x 10              | 3-1/2 x 9-1/4   | 32.38            | 49.91            | 230.8           | 18.89            | 33.05   |  |
| 4 x 12              | 3-1/2 x 11-1/4  | 39.38            | 73.83            | 415.3           | 22.97            | 40.20   |  |
| 4 x 14              | 3-1/2 x 13-1/4  | 46.38            | 102.41           | 678.5           | 27.05            | 47.34   |  |
| 4 x 16              | 3-1/2 x 15-1/4  | 53.38            | 135.66           | 1034            | 31.14            | 54.49   |  |

 $f_{b} = \frac{M}{5_{x}} = \frac{1614^{-1}(12)}{21.39m^{3}} = \frac{905.4}{905.4}$  psi

 $f_{v} = \frac{3}{2} \frac{v}{A} = \frac{1.5(430.3)}{13.88} = 46.5 \text{Ps}$ 

from NDS 2012

Given: <u>member size</u>, material and span. load duration = <u>10 min</u>. Req'd: Max. Safe Load (capacity)



Assume f = F'
 Maximum actual = allowable stress

University of Michigan, TCAUP



# Table 4AReference Design Values for Visual<br/>(Cont.)(2" - 4" thick)1,2,3

(All species except Southern Pine—see duration and dry service conditions. See NDS adjustment factors.)

|                              |                        | Design va |                                 |                               |  |  |  |  |  |
|------------------------------|------------------------|-----------|---------------------------------|-------------------------------|--|--|--|--|--|
| Species and commercial grade | Size<br>classification | Bending   | Tension<br>parallel<br>to grain | Shear<br>parallel<br>to grain |  |  |  |  |  |
|                              |                        | Fb        | Ft                              | Fv                            |  |  |  |  |  |
| SPRUCE-PINE-FIR              |                        |           |                                 |                               |  |  |  |  |  |
| Select Structural            |                        | 1,250     | 700                             | 135                           |  |  |  |  |  |
| No. 1/ No. 2                 | 2" & wider             | 875       | 450                             | 135                           |  |  |  |  |  |
| No. 3                        |                        | 500       | 250                             | 135                           |  |  |  |  |  |
| Stud                         | 2" & wider             | 675       | 350                             | 135                           |  |  |  |  |  |
| Construction                 | and a second second    | 1,000     | 500                             | 135                           |  |  |  |  |  |
| Standard                     | 2" - 4" wide           | 550       | 275                             | 135                           |  |  |  |  |  |
| Utility                      |                        | 275       | 125                             | 135                           |  |  |  |  |  |

Arch 544

Slide 45 of 88



Analysis Example

Determine allowable stresses - NDS Supplement

Adjustment Factors

### Determine factors:

$$CD = ? \qquad lowin
CM = 1 ----
Ct = 1 ----
CL = 1 --- 
CF = ?
Cfu = 1 ---
Ci = 1 ---
Cr = 1 ---
Cr = 1 ----
Cr = 1 ----$$

| Table 4.3.1 | Applicability of Adjustment Factors for Sawn | ı Lumber |
|-------------|----------------------------------------------|----------|
|             |                                              |          |

|                   |   | ASD<br>only          |                    | ASD and LRFD       |                       |                |                   |                 |                          |                         |                           |                     |                          | LRFD<br>only             |                    |  |  |
|-------------------|---|----------------------|--------------------|--------------------|-----------------------|----------------|-------------------|-----------------|--------------------------|-------------------------|---------------------------|---------------------|--------------------------|--------------------------|--------------------|--|--|
|                   |   | Load Duration Factor | Wet Service Factor | Temperature Factor | Beam Stability Factor | Size Factor    | Flat Use Factor   | Incising Factor | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | Format Conversion Factor | Resistance Factor        | Time Effect Factor |  |  |
| $F_b = F_b$       | x | CD                   | См                 | Ct                 | $C_L$                 | C <sub>F</sub> | $C_{\mathrm{fu}}$ | $C_i$           | Cr                       | -                       |                           |                     | K <sub>F</sub>           | фь                       | λ                  |  |  |
| $\dot{F_v} = F_v$ | x | CD                   | См                 | Ct                 | -                     | -              | -                 | $C_i$           | -                        | -                       | -                         | -                   | K <sub>F</sub>           | $\boldsymbol{\varphi}_v$ | λ                  |  |  |

|               |               | Size Factors,       | C <sub>F</sub>                 |  |  |  |  |
|---------------|---------------|---------------------|--------------------------------|--|--|--|--|
|               |               | F                   | b                              |  |  |  |  |
|               |               | Thickness (breadth) |                                |  |  |  |  |
| Grades        | Width (depth) | <u>(</u> ) & 3"     | 4"                             |  |  |  |  |
|               | 2", 3", 8(4") | 1.5                 | 1.5                            |  |  |  |  |
| Select        | 5"            | 1.4                 | 1.4                            |  |  |  |  |
| Structural,   | 6"            | 1.3                 | 1.3                            |  |  |  |  |
| No.1 & Btr,   | 8"            | 1.2                 | 1.3                            |  |  |  |  |
| No.1, No.2,   | 10"           | 1.1                 | 1.2                            |  |  |  |  |
| No.3          | 12"           | 1.0                 | 1.1                            |  |  |  |  |
|               | 14" & wider   | 0.9                 | 1.0                            |  |  |  |  |
|               | 2", 3", & 4"  | 1.1                 | 1.1                            |  |  |  |  |
| Stud          | 5" & 6"       | 1.0                 | 1.0                            |  |  |  |  |
|               | 8" & wider    | Use No.3 Grade      | Use No.3 Grade tabulated desig |  |  |  |  |
| Construction, | 2", 3", & 4"  | 1.0                 | 1.0                            |  |  |  |  |
| Standard      |               |                     |                                |  |  |  |  |
| Utility       | 4"            | 1.0                 | 1.0                            |  |  |  |  |
|               | 2" & 3"       | 0.4                 | _                              |  |  |  |  |

# Table 2.3.2 Frequently Used LoadDuration Factors, $C_p^1$

| Load Duration       | CD    | Typical Design Loads |
|---------------------|-------|----------------------|
| Permanent           | 0.9   | Dead Load            |
| Ten years           | 1.0   | Occupancy Live Load  |
| Two months          | 115   | Snow Load            |
| Seven days Lr       | (125) | Construction Load    |
| Ten minutes         | (1.6) | Wind/Earthquake Load |
| Impact <sup>2</sup> | 2.0   | Impact Load          |



University of Michigan, TCAUP

Arch 544

Slide 47 of 88

Analysis Example (cont.)

Solve stress equation for moment
 M = F'<sub>b</sub> S<sub>x</sub> (i.e. moment capacity)

- 3. Use maximum forces to find loads
  - Back calculate a maximum load from moment capacity
- 4. Check shear
  - Check shear for load capacity from step 3.
  - Use P from moment to find Vmax
  - Check that fv < Fv'</li>
- 4. Check deflection (serviceability)
- 5. Check bearing (serviceability)

$$M_{d} = P_{4}$$

$$P = M_{d} \frac{4}{L}$$

$$P = 536 (4)/6$$

$$P = 357^{45}$$

$$F_{v}' = F_{v} (C_{D}) = 135_{PSI} (1.6) = 216_{PSI}$$

$$V_{max} = P_{2} = 357^{*}_{2} = 178.6^{*}$$

$$F_{v} = \frac{3}{2} \frac{V_{max}}{A} = 1.5 \frac{178.6^{*}}{5.25 m^{2}} = 51_{PSI}$$

$$51 \le 216 \dots \text{ or }$$

Question ...

For the No.2 S-P-F 2x4 section determine the safe center point load capacity with the member flatwise.

$$F_{b}' = F_{b} (C_{D} C_{M} C_{i} C_{L} C_{F} C_{fu} C_{i} C_{r})$$

$$C_{D} = 1.6 - C_{F} C_{fu} C_{i} C_{r}$$

$$C_{E} = 1.5 - C_{fu} = 1.1$$

$$\mathcal{B75} (1.6 \cdot 1.5 \cdot 1.1) = \mathcal{A}2310 \text{ ps}$$

 $F_v' = F_v (C_D C_M C_t C_i)$  $2310 (1.313) = 3033 \text{ i}_{4} + 252.75^{\circ}$  based on edgewise use (load applied to marrow face). When dimension lumber is used flatwise (load applied to wide  $M = F'_{b} S_{y} P = M4/L P = \frac{252(4)}{6} = 168^{\circ}$  face), the bending design value, F<sub>b</sub>, shall also be permitted to be multiplied by the following flat use factors:



### Flat Use Factor, C<sub>fu</sub>

Bending design values adjusted by size factors are

| Flat        | Flat Use Factors, C <sub>fu</sub> |      |  |  |  |  |  |  |  |  |  |
|-------------|-----------------------------------|------|--|--|--|--|--|--|--|--|--|
| Width       | Thickness (breadth)               |      |  |  |  |  |  |  |  |  |  |
| (depth)     | 2" & 3"                           | 4"   |  |  |  |  |  |  |  |  |  |
| 2" & 3"     | 1.0                               | _    |  |  |  |  |  |  |  |  |  |
| 4"          | 1.1                               | 1.0  |  |  |  |  |  |  |  |  |  |
| 5"          | 1.1                               | 1.05 |  |  |  |  |  |  |  |  |  |
| 6"          | 1.15                              | 1.05 |  |  |  |  |  |  |  |  |  |
| 8"          | 1.15                              | 1.05 |  |  |  |  |  |  |  |  |  |
| 10" & wider | 1.2                               | 1.1  |  |  |  |  |  |  |  |  |  |

University of Michigan, TCAUP

Check that  $f_v < F'_v$ 

Arch 544

Slide 49 of 88

# Analysis Example 3

### 3. Sawn Lumber - Rafters

Analyze the simple roof rafter system to determine safety in Analyze the simple root raiter system to determine safety in flexure. Determine the controlling load combination (see ASCE-7 2.4). Consider all load cases which include D, Lr, S and W together with the corresponding CD. Assume adequate bracing to give CL=1. Also CM, Ct, Cfu and Ci should be taken as 1.

| DATASET: 1 -2-                   |                |
|----------------------------------|----------------|
| Wood Species                     | Western Cedars |
| Wood Grade                       | No.2           |
| Rafter Size                      | 2x10           |
| Rafter O.C. Spacing              | 16 IN          |
| Rafter Span                      | 10 FT          |
| Roof Slope                       | 18 IN/FT       |
| Dead Load (includes selfweight)  | 14 PSF         |
| Roof Live Load                   | 12 PSF         |
| Snow Load                        | 20 PSF         |
| Wind Load (+ is pressure inward) | 20 PSF         |



$$D: \frac{14}{12} \text{PSF} \frac{16}{12} = 18.67 \frac{\text{PLF}}{18.67} \frac{18.03}{10.7} = 33.45 \text{PLF}(\text{PROJECTED})$$

$$L: 12 \text{PSF} \frac{16}{12} = 16 \text{PLF}(\text{PROJECTED})$$

$$S: 20 \text{PSF} \frac{16}{12} = 26.67 \text{PLF}(\text{PROJECTED})$$

$$W: 20 \text{PSF} \frac{14}{12} = 26.67 \text{PLF}(\text{NORMAL}) \text{ on } 18.03$$

University of Michigan, TCAUP



University of Michigan, TCAUP



Other stress adjustment factors:

 $C_F \underbrace{C_r}$ 

for 16" o.c.  $C_r = 1.15$   $\checkmark$ 

### Repetitive Member Factor, C<sub>r</sub>

Bending design values,  $F_b$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor,  $C_r = 1.15$ , when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

|                            | Size Factors, C <sub>F</sub> |               |                  |                  |                       |                |  |  |  |  |  |  |
|----------------------------|------------------------------|---------------|------------------|------------------|-----------------------|----------------|--|--|--|--|--|--|
|                            |                              |               | F                | b                | Ft                    | F <sub>c</sub> |  |  |  |  |  |  |
|                            |                              |               | Thickness        | (breadth)        |                       |                |  |  |  |  |  |  |
| C <sub>F</sub> Size factor | Grades                       | Width (depth) | <u>(2</u> ")& 3" | 4"               |                       |                |  |  |  |  |  |  |
| 2 x 10                     |                              | 2", 3", & 4"  | 1.5              | 1.5              | 1.5                   | 1.15           |  |  |  |  |  |  |
|                            | Select                       | 5"            | 1.4              | 1.4              | 1.4                   | 1.1            |  |  |  |  |  |  |
| use 1.1                    | Structural,                  | 6"            | 1.3              | 1.3              | 1.3                   | 1.1            |  |  |  |  |  |  |
|                            | No.1 & Btr,                  | 8"            | 1.2              | 1.3              | 1.2                   | 1.05           |  |  |  |  |  |  |
|                            | No.1, No.2,                  | (10")         | 1.1              | 1.2              | 1.1                   | 1.0            |  |  |  |  |  |  |
|                            | No.3                         | 12"           | 1.0              | 1.1              | 1.0                   | 1.0            |  |  |  |  |  |  |
|                            |                              | 14" & wider   | 0.9              | 1.0              | 0.9                   | 0.9            |  |  |  |  |  |  |
|                            |                              | 2", 3", & 4"  | 1.1              | 1.1              | 1.1                   | 1.05           |  |  |  |  |  |  |
|                            | Stud                         | 5" & 6"       | 1.0              | 1.0              | 1.0                   | 1.0            |  |  |  |  |  |  |
|                            |                              | 8" & wider    | Use No.3 Grade   | tabulated design | values and size facto | ors            |  |  |  |  |  |  |
|                            | Construction,                | 2", 3", & 4"  | 1.0              | 1.0              | 1.0                   | 1.0            |  |  |  |  |  |  |
|                            | Standard                     |               |                  |                  |                       |                |  |  |  |  |  |  |
|                            | Utility                      | 4"            | 1.0              | 1.0              | 1.0                   | 1.0            |  |  |  |  |  |  |
|                            |                              | 2" & 3"       | 0.4              | _                | 0.4                   | 0.6            |  |  |  |  |  |  |

Tabulated allowable stress:

F<sub>b</sub> = 700 psi

| Species and commercial<br>grade |                        | Design values in pounds per square inch (psi) |                                 |                               |                                          |                                     |            |              |                      |   |
|---------------------------------|------------------------|-----------------------------------------------|---------------------------------|-------------------------------|------------------------------------------|-------------------------------------|------------|--------------|----------------------|---|
|                                 | Size<br>classification | Bending                                       | Tension<br>parallel<br>to grain | Shear<br>parallel<br>to grain | Compression<br>perpendicular<br>to grain | Compression<br>parallel<br>to grain | Modulus of | f Elasticity | Specific<br>Gravity⁴ |   |
|                                 |                        |                                               | Fb                              | F,                            | Fv                                       | F <sub>c⊥</sub>                     | Fc         | E            | Emin                 | G |
| WESTERN CEDARS                  |                        |                                               |                                 |                               |                                          |                                     |            |              |                      |   |
| Select Structural               |                        | 1,000                                         | 600                             | 155                           | 425                                      | 1,000                               | 1,100,000  | 400,000      |                      |   |
| No. 1                           | 2" & wider             | 725                                           | 425                             | 155                           | 425                                      | 825                                 | 1,000,000  | 370,000      |                      |   |
| No. 2                           | Z & wider              | 700                                           | 425                             | 155                           | 425                                      | 650                                 | 1,000,000  | 370,000      |                      |   |
| No. 3                           |                        | 400                                           | 250                             | 155                           | 425                                      | 375                                 | 900,000    | 330,000      | 0.00                 |   |
| Stud                            | 2" & wider             | 550                                           | 325                             | 155                           | 425                                      | 400                                 | 900,000    | 330,000      | 0.36                 |   |
| Construction                    |                        | 800                                           | 475                             | 155                           | 425                                      | 850                                 | 900,000    | 330,000      |                      |   |
| Standard                        | 2" - 4" wide           | 450                                           | 275                             | 155                           | 425                                      | 650                                 | 800,000    | 290,000      |                      |   |
| Utility                         |                        | 225                                           | 125                             | 155                           | 425                                      | 425                                 | 800.000    | 290.000      |                      |   |

University of Michigan, TCAUP

Arch 544

Slide 55 of 88

# Analysis Example 3

allowable stress:

 $F_{b} = 700 \text{ psi}$   $F'_{b} = F_{b} (C_{D} C_{M} C_{t} C_{L} C_{F} C_{fu} C_{i} C_{r})$   $F'_{b} = 700 \text{ psi} (1.6 \ 1.1 \ 1.15) = 1416.8 \text{ psi}$ 

| Table 4.3    | .1 / | Appl                 | icab               | ility              | of                    | Adju           | stm             | ent             | Fact                     | tors                    | for                       | Sav                 | n Lu                     | ımbo                     | ər                 |
|--------------|------|----------------------|--------------------|--------------------|-----------------------|----------------|-----------------|-----------------|--------------------------|-------------------------|---------------------------|---------------------|--------------------------|--------------------------|--------------------|
|              |      | ASD<br>only          |                    |                    |                       | AS             | SD an           | d LR            | FD                       |                         |                           |                     |                          | LRFI<br>only             |                    |
|              |      | Load Duration Factor | Wet Service Factor | Temperature Factor | Beam Stability Factor | Size Factor    | Flat Use Factor | Incising Factor | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | Format Conversion Factor | Resistance Factor        | Time Effect Factor |
| $F_b = F_b$  | x    | CD                   | См                 | Ct                 | $C_L$                 | C <sub>F</sub> | $C_{\text{fu}}$ | Ci              | Cr                       | -                       | -                         | -                   | K <sub>F</sub>           | фь                       | λ                  |
| $F_v' = F_v$ | x    | CD                   | См                 | $C_t$              | -                     | -              | -               | $C_i$           | -                        | -                       | -                         | -                   | K <sub>F</sub>           | $\boldsymbol{\varphi}_v$ | λ                  |

actual stress:

University of Michigan, TCAUP

Arch 544

Slide 57 of 88

# Analysis Example

Given: loading, member size, material and span.

Req'd: LL capacity in psf

### 4. Sawn Lumber - Joists

Analyze the given floor system for live + dead load. Determine the maximum capacity for the floor based on the flexural strength of the joists. Check the joists for shear strength. Assume that the flooring does not supply bracing (i.e. braced at C.L. and ends as shown). Assume M.C. < 19%

### DATASET: 1 -2-

Wood Species Wood Grade Wood Size Joist o.c. spacing Joist Span Floor D load including joists





### Find Fb, Fv and Emin for Douglas Fir – South No2.

• (from NDS Supplement)

| Table 4A<br>(Cont.)                                                                 | (2" -                                                       | rence C<br>4" thick                | () <sup>1,2,3</sup> |                           |                            |                            | -                  |                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|---------------------|---------------------------|----------------------------|----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | durati                                                      | pecies e<br>on and dr<br>tment fac | y ser               | vice co                   |                            |                            |                    |                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                                                                                   |                                                             |                                    |                     | USE                       | WITH TA                    | BLE 4A                     | ADJUST             | TMEN                                                                                                                                                                                                  | T FAC                                                                                                                          | TORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                             |                                    |                     |                           |                            | -                          |                    |                                                                                                                                                                                                       |                                                                                                                                | uare inch (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | osi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Species and grad                                                                    |                                                             | Size                               | tion                |                           | Tension<br>parallel        | Shear<br>parallel          |                    | ression<br>ndicular                                                                                                                                                                                   |                                                                                                                                | npression<br>parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     | Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Grac<br>cific Rul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| gru                                                                                 |                                                             | liuoomod                           | E                   | Bending<br>F <sub>b</sub> | to grain<br>F <sub>t</sub> | to grain<br>F <sub>v</sub> |                    | grain<br>= <sub>∘⊥</sub>                                                                                                                                                                              | t                                                                                                                              | o grain<br>F <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Modulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Elastic                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vity⁴ Age<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DOUGLAS FIR-                                                                        |                                                             |                                    |                     |                           |                            |                            |                    |                                                                                                                                                                                                       | -                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Select Structural<br>No. 1                                                          |                                                             | 2" & wid                           | ler                 | 1,350<br>925              | 900<br>600                 | 180<br>180                 | 5                  | 20<br>20                                                                                                                                                                                              |                                                                                                                                | 1,600<br>1,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,400,000<br>1,300,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 470,0                                                                                                                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No. 2<br>No. 3                                                                      |                                                             | 2 6 110                            |                     | 850<br>500                | 525<br>300                 | 180<br>180                 |                    | 20<br>20                                                                                                                                                                                              |                                                                                                                                | 1,350<br>775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,200,000<br>1,100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46 WW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Stud<br>Construction                                                                |                                                             | 2" & wid                           | ler                 | 675<br>975                | 425<br>600                 | 180<br>180                 |                    | 20<br>20                                                                                                                                                                                              |                                                                                                                                | 850<br>1,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Standard<br>Utility                                                                 |                                                             | 2" - 4" w                          | ide                 | 550<br>250                | 350<br>150                 | 180<br>180                 | 5                  | 20<br>20                                                                                                                                                                                              |                                                                                                                                | 1,400<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400,0                                                                                                                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                             |                                    |                     |                           |                            |                            |                    |                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                             |                                    |                     |                           |                            |                            |                    |                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                             |                                    |                     |                           |                            |                            |                    |                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                             |                                    |                     |                           |                            |                            |                    |                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nalvaia                                                                             | Evo                                                         | mple                               |                     |                           |                            |                            | _                  |                                                                                                                                                                                                       | 1                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VAVIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nalysis                                                                             | Exa                                                         | mple                               | Э                   |                           |                            |                            | =                  | lominal                                                                                                                                                                                               |                                                                                                                                | tandard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     | ( AXIS<br>Moment                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y AXIS<br>Mome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                   |                                                             | •                                  | 9                   |                           |                            |                            |                    | ominal<br>Size                                                                                                                                                                                        | D<br>Siz                                                                                                                       | ressed<br>ze (S4S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section<br>Modulus                                                                                                                                                                                                                                                                                                                                  | Moment<br>of<br>Inertia                                                                                                                                                                                                                                                                                                                                                                                                                                | Section<br>Modulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mome<br>of<br>Inerti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nalysis                                                                             |                                                             | •                                  | Э                   |                           |                            |                            |                    |                                                                                                                                                                                                       | D<br>Siz                                                                                                                       | ressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section                                                                                                                                                                                                                                                                                                                                             | Moment<br>of                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mome<br>of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                                                                                   |                                                             | •                                  | Э                   |                           |                            |                            |                    | Size<br>b x d<br>pards <sup>1</sup>                                                                                                                                                                   | D<br>Siz<br>it                                                                                                                 | ressed<br>ze (S4S)<br>b x d<br>n. x in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of<br>Section<br>A<br>in. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup>                                                                                                                                                                                                                                                                                           | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                         | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ection Pro                                                                          | opertie                                                     | es:                                | 9                   |                           |                            |                            |                    | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4                                                                                                                                                 | D<br>Siz<br>it<br>3/4<br>3/4                                                                                                   | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531                                                                                                                                                                                                                                                                         | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup><br>0.977<br>2.680                                                                                                                                                                                                                                                                                                                                                                       | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup><br>0.088<br>0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ection Pro                                                                          | opertie                                                     | es:                                | 9                   |                           |                            |                            | Be                 | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8                                                                                                                               | D<br>Siz<br>it<br>3/4<br>3/4<br>3/4<br>3/4                                                                                     | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 5-1/2<br>4 x 7-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570                                                                                                                                                                                                                                                       | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup><br>0.977<br>2.680<br>10.40<br>23.82                                                                                                                                                                                                                                                                                                                                                     | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup><br>0.088<br>0.123<br>0.193<br>0.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ection Pro<br>x 10 (3.5'                                                            | opertie<br>' x 11.                                          | es:                                | 9                   |                           |                            |                            | B                  | Size<br>b x d<br>0ards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12                                                                                                           | D<br>Siz<br>in<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4                                                                              | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82                                                                                                                                                                                                                                     | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup><br>0.977<br>2.680<br>10.40<br>23.82<br>49.47<br>88.99                                                                                                                                                                                                                                                                                                                                   | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup><br>0.088<br>0.123<br>0.193<br>0.255<br>0.325<br>0.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ection Pro<br>x 10 (3.5'                                                            | opertie<br>' x 11.                                          | es:                                | Ð                   |                           |                            |                            | B                  | Size<br>b x d<br>0ards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12                                                                                                           | D<br>Siz<br>in<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>0n Lum                                                             | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82                                                                                                                                                                                                                                     | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup><br>0.977<br>2.680<br>10.40<br>23.82<br>49.47<br>88.99                                                                                                                                                                                                                                                                                                                                   | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mome<br>of<br>Inerti<br>Iyy<br>in. <sup>4</sup><br>0.088<br>0.123<br>0.193<br>0.255<br>0.325<br>0.325<br>0.396<br>3.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ection Pro<br>x 10 (3.5 <sup>°</sup><br>rea = 13.8                                  | opertie<br>' x 11.<br>38 in <sup>2</sup>                    | es:                                | Ð                   |                           |                            |                            | B                  | Size<br>b x d<br>0ards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12<br>mensio                                                                                                 | D<br>Siz<br>in<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/                                                              | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4<br>beer (see N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>UDS 4.1.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section<br>Modulus<br>S <sub>xx</sub> in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>2) and Dec                                                                                                                                                                                                                          | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup><br>0.977<br>2.680<br>10.40<br>23.82<br>49.47<br>88.99<br>kking (see                                                                                                                                                                                                                                                                                                                     | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055<br>NDS 4.1. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup><br>0.088<br>0.123<br>0.193<br>0.255<br>0.325<br>0.325<br>0.326<br>0.326<br>0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ection Pro<br>x 10 (3.5 <sup>°</sup><br>rea = 13.8                                  | opertie<br>' x 11.<br>38 in <sup>2</sup>                    | es:                                | 9                   |                           |                            |                            | B                  | Size<br>b x d<br>0 ards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12<br>mensio<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6                                                            | D<br>Siz<br>in<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/                                              | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>4 x 9-1/4<br>4 x 11-1/4<br>Diber (see N<br>(2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 4-1/2<br>(2 x 5-1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>6.938<br>6.938<br>6.938<br>6.938<br>5.250<br>5.250<br>6.750<br>6.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>1.56<br>3.06<br>5.06<br>7.56                                                                                                                                                                                                     | Moment<br>of<br>Inertia<br>I <sub>xx</sub><br>in. <sup>4</sup><br>0.977<br>2.680<br>10.40<br>23.82<br>49.47<br>88.99<br>:king (see<br>1.953<br>5.359<br>11.39<br>20.80                                                                                                                                                                                                                                                                                 | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.667<br>1.055<br>NDS 4.1. <sup>3</sup><br>0.938<br>1.313<br>1.688<br>2.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in.4           0.088<br>0.123<br>0.123<br>0.125<br>0.325<br>0.325<br>0.325<br>0.325<br>0.326<br>0.396<br>3.5)           0.088<br>0.123<br>0.255<br>0.325<br>0.325<br>0.396<br>3.51           0.088<br>0.123<br>0.255<br>0.325<br>0.325<br>0.396<br>3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ection Pro<br>x 10 (3.5 <sup>°</sup><br>rea = 13.8                                  | opertie<br>' x 11.<br>38 in <sup>2</sup>                    | es:                                | 9                   |                           |                            |                            | B                  | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12<br>mensio<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8                                                    | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/                            | ressed<br>ze (S4S)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 7-1/4<br>4 x 7-1/4<br>4 x 7-1/4<br>4 x 7-1/4<br>4 x 7-1/4<br>4 x 7-1/4<br>7 (2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 7-1/4<br>/2 x 7-1/4<br>/2 x 9-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>8.438<br>0DS 4.13.2<br>3.750<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>10.88<br>13.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>9 and Dec<br>1.56<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)                                                                                                                                                                    | Moment           of           Inertia           I <sub>xx</sub> in.4           0.977           2.680           10.40           23.82           49.47           88.99           king (see           1.953           5.359           11.39           20.80           47.63           98.93                                                                                                                                                               | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.680<br>1.055<br>NDS 4.1.<br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup><br>0.088<br>0.123<br>0.193<br>0.255<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326<br>0.3260<br>0.326<br>0.326<br>0.326<br>0.3260<br>0.326<br>0.326 |
| ection Pro<br>x 10 (3.5 <sup>°</sup><br>rea = 13.8<br>x = 21.39                     | opertic<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | 25")                               |                     |                           |                            |                            | <u>B</u> d         | Size<br>b x d<br>b x d<br>0 ards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12<br>0 2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 8<br>2 x 10<br>2 x 12<br>2 x 12<br>2 x 12 | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/                             | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 7-1/4<br>x 11-1/4<br>y x 3-1/2<br>4 x 7-1/4<br>y x 3-1/2<br>(2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2                                         | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>0DS 4.1.3.2<br>3.750<br>6.750<br>8.250<br>6.750<br>8.250<br>0.088<br>13.88<br>13.88<br>19.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>2) and Dec<br>1.56<br>3.06<br>5.06<br>7.56<br>13.14<br>[21.39]<br>31.64<br>43.89                                                                                                                                                 | Moment           of           Inertia           I <sub>xx</sub> in.4           0.977           2.680           10.40           23.82           49.47           88.99           klng (see           1.953           5.359           11.39           20.80           47.63           98.93           178.0           290.8                                                                                                                               | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.6867<br>1.055<br>NDS 4.1.<br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469<br>4.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in.4<br>0.088<br>0.123<br>0.193<br>0.225<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.325<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.396<br>0.397<br>0.396<br>0.396<br>0.397<br>0.396<br>0.397<br>0.396<br>0.397<br>0.396<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.397<br>0.30       |
| ection Pro<br>x 10 (3.5 <sup>°</sup><br>rea = 13.8<br>x = 21.39                     | opertic<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | 25")                               |                     | ıstme                     | nt Fac                     | tors fo                    | <u>B</u> d         | Size<br>b x d<br>b x d<br>0 ards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 12<br>0 2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 8<br>2 x 10<br>2 x 12<br>2 x 12<br>2 x 12 | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/                             | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 7-1/4<br>x 11-1/4<br>y x 3-1/2<br>4 x 7-1/4<br>y x 3-1/2<br>(2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2                                         | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>IDS 4.1.3.2<br>3.750<br>5.250<br>6.750<br>8.250<br>10.88<br>13.88<br>16.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>1.56<br>3.06<br>7.56<br>3.06<br>7.56<br>3.14<br>[21.39]<br>3.1.44                                                                                                                                                                | Moment           of           Inertia           Ix,           in.4           0.977           2.680           10.40           23.82           49.47           88.99           1.953           5.359           11.39           20.80           47.63           98.93           178.0                                                                                                                                                                     | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.680<br>0.687<br>1.055<br>NDS 4.1. <sup>3</sup><br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469<br>4.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mome<br>of<br>Inerti<br>I <sub>yy</sub><br>in. <sup>4</sup><br>0.088<br>0.123<br>0.193<br>0.255<br>0.325<br>0.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ection Pro<br>x 10 (3.5 <sup>°</sup><br>ea = 13.8<br>x = 21.39<br>le <b>4.3.1 A</b> | opertie<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | 25")                               |                     | ıstme                     | ont Fac                    | tors f                     | <u>B</u> d         | Size<br>b x d<br>b x d<br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 10<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>Wn Lu                                              | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1- | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4<br>hber (see P<br>/2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2                       | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>0DS 4.1.3.2<br>3.750<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>0.888<br>13.88<br>19.88<br>8.75<br>11.25<br>13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>9 and Dec<br>1.56<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)<br>31.64<br>43.89<br>5.10<br>8.44<br>12.60                                                                                                                         | Moment<br>of<br>Inertia           I <sub>xx</sub> 0.977           2.680           10.40           23.82           49.47           88.99           king (see<br>1.953           5.359           11.39           20.80           47.63           98.93           178.0           290.8           8.932           18.98           34.66                                                                                                                   | Section<br>Modulus<br>Syy<br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.6867<br>1.055<br>NDS 4.1.<br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469<br>4.219<br>4.969<br>3.646<br>4.689<br>5.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mome<br>of<br>Inerti<br>lyy<br>in.4<br>0.088<br>0.122<br>0.395<br>0.255<br>0.325<br>0.395<br>0.703<br>0.984<br>1.266<br>1.547<br>2.038<br>2.602<br>3.164<br>3.722<br>4.557<br>5.855<br>5.855<br>7.16 <sup>++</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ection Pro<br>x 10 (3.5 <sup>2</sup><br>rea = 13.8<br>x = 21.39                     | opertic<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | 25")                               | Adju                | <b>istme</b><br>3D and    |                            | tors f                     | <u>B</u> d         | Size<br>b x d<br>b x d<br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 10<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>Wn Lu                                              | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/                             | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4<br>hber (see P<br>/2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x                    | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>4.338<br>5.250<br>0.8250<br>0.8250<br>10.88<br>13.88<br>13.88<br>13.88<br>13.85<br>11.25<br>13.75<br>18.13<br>23.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>9 and Dec<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)<br>31.64<br>43.89<br>5.10<br>8.44<br>12.60<br>21.90<br>5.55                                                                                                                | Moment<br>of<br>Inertia           0.gr7           2.680           10.40           23.82           49.47           88.99           1.953           5.359           11.39           20.80           47.63           98.93           178.0           290.8           34.66           79.39           164.9                                                                                                                                                | Section<br>Modulus<br>Syy<br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055<br>1.054<br>1.0938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.646<br>4.688<br>5.729<br>7.552<br>9.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mome<br>of<br>Inertii<br>ly<br>in.4           0.0886           0.122           0.193           0.255           0.396           0.396           0.392           0.392           0.393           0.703           0.988           2.0392           3.164           4.555           5.8558           9.444           12.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ection Pro<br>x 10 (3.5 <sup>2</sup><br>rea = 13.8<br>x = 21.39                     | opertie<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | 25")                               | Adju                |                           | LRFD                       |                            | Di<br>Di<br>Dr Sav | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 10<br>1 x 12<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>2 x 12<br>2 x 12                               | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-        | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4<br>hber (see P<br>/2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x                    | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>0DS 4.1.3.2<br>3.750<br>5.250<br>6.750<br>8.250<br>6.750<br>8.250<br>10.88<br>113.88<br>113.88<br>113.88<br>1.3.75<br>11.25<br>13.75<br>18.13<br>23.13<br>23.13<br>23.13<br>23.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>1.56<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)<br>31.64<br>43.89<br>5.10<br>8.44<br>12.60<br>35.65<br>52.73<br>73.15                                                                                                           | Moment           of           Inertia           I₄           0.977           2.680           10.40           23.82           49.47           84.93           5.359           11.39           20.80           47.63           98.93           178.0           290.80           47.63           98.93           164.9           296.6                                                                                                                    | Section<br>Modulus<br>S <sub>yy</sub><br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.687<br>1.055<br>NDS 4.1.<br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469<br>4.219<br>4.219<br>4.219<br>4.219<br>4.264<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.646<br>3.6666<br>3.6676<br>3.6676<br>3.6676<br>3.6676<br>3.6676<br>3.6676<br>3.66766<br>3.6676 | Mome         of           of         Inerti           lp.         in.4           0.086         0.122           0.122         0.192           0.123         0.60           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.397           0.396         0.396           0.396         0.397           0.396         0.396           0.396         0.397           0.396         0.396           0.4455         5.865           9.444         12.04           14.68         17.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ection Pro<br>x 10 (3.5 <sup>2</sup><br>ea = 13.8<br>x = 21.39                      | opertie<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | es:<br>25")                        | Adju<br>AS          | SD and                    | LRFD                       |                            | Di<br>Di<br>Dr Sav | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 10<br>1 x 12<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>2 x 12<br>2 x 12                               | D<br>Siz<br>it<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4                                           | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>4 x 9-1/4<br>7 (2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 3- | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>05 4.13.2<br>3.750<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>10.88<br>13.88<br>13.88<br>13.88<br>13.88<br>13.25<br>13.75<br>18.13<br>23.13<br>28.13<br>33.13<br>38.13<br>33.13<br>38.13<br>38.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>c) and Dec<br>1.56<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)<br>31.64<br>43.89<br>5.10<br>8.44<br>42.60<br>21.90<br>35.65<br>52.73<br>73.15<br>96.90<br>7.15                                                                   | Moment<br>of<br>Inertia           J <sub>xx</sub> 0.977           2.680           10.40           23.82           49.47           88.99           1.953           5.359           11.39           20.80           47.63           98.93           178.0           290.8           8.932           18.98           34.66           79.39           164.9           296.6           48.4.6           738.9           12.51                               | Section<br>Modulus<br>Syy<br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055<br>NDS 4.1.<br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469<br>4.219<br>4.969<br>3.646<br>4.688<br>5.729<br>7.552<br>9.635<br>5.11.72<br>13.80<br>15.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mome<br>of<br>Inertii<br>ly,<br>in.4.<br>0.088<br>0.123<br>0.255<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.325<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.355<br>0.35                 |
| ection Pro<br>x 10 (3.5 <sup>2</sup><br>rea = 13.8<br>x = 21.39                     | opertie<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | es:<br>25")                        | Adju<br>AS          | SD and                    | LRFD                       |                            | Di<br>Di<br>Dr Sav | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 10<br>1 x 12<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>2 x 12<br>2 x 12                               | D<br>Siz<br>it<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4                                           | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>4 x 9-1/4<br>7 (2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 3- | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>JDS 4.1.3.2<br>3.750<br>5.250<br>6.750<br>8.250<br>10.88<br><u>13.88</u><br>13.88<br>19.88<br>8.75<br>11.25<br>13.75<br>18.13<br>23.13<br>28.13<br>33.13<br>38.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>9 and Dec<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)<br>31.64<br>43.89<br>5.10<br>(21.39)<br>31.64<br>43.89<br>5.10<br>(21.39)<br>31.64<br>43.89<br>5.10<br>5.273<br>73.15<br>52.73<br>73.15<br>596.90                          | Moment<br>of<br>Inertia           l <sub>x</sub> l <sub>x</sub> in. <sup>4</sup> 0.977           2.680           10.40           23.82           49.47           88.99           11.39           20.80           47.63           98.93           178.0           20.80           47.63           98.93           178.0           290.8           8.932           18.98           34.66           79.39           296.6           484.6           738.9 | Section<br>Modulus<br>Syy<br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055<br><b>NDS 4.1</b><br><b>0.938</b><br>1.313<br>1.688<br>2.063<br>2.719<br>3.468<br>2.063<br>2.719<br>3.468<br>5.729<br>7.555<br>9.635<br>11.72<br>13.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mome         of           of         Inerti           lp.         in.4           0.086         0.122           0.122         0.192           0.123         0.60           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.396         0.396           0.4455         5.865           9.444         12.55           1.466         12.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ection Pro<br>x 10 (3.5 <sup>2</sup><br>rea = 13.8<br>x = 21.39                     | opertie<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | es:<br>25")                        | Adju<br>AS          | SD and                    | LRFD                       |                            | Di<br>Di<br>Dr Sav | Size<br>b x d<br>Dards <sup>1</sup><br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 10<br>1 x 12<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>2 x 12<br>2 x 12                               | D<br>Siz<br>it<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4                                           | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>4 x 9-1/4<br>7 (2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 3- | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br>05 4.13.2<br>3.750<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>6.750<br>8.250<br>10.88<br>13.88<br>13.88<br>13.88<br>13.25<br>13.75<br>18.13<br>23.13<br>28.13<br>33.13<br>38.13<br>33.13<br>38.13<br>33.13<br>38.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>c) and Dec<br>3.06<br>5.06<br>5.06<br>5.06<br>13.14<br>12.60<br>21.39<br>5.10<br>8.44<br>43.89<br>5.10<br>8.44<br>43.89<br>5.10<br>8.44<br>12.60<br>21.90<br>35.65<br>52.73<br>73.15<br>96.90<br>7.15<br>11.81<br>17.65<br>30.66 | Moment<br>of<br>Inertia           J <sub>xx</sub> 0.977           2.680           10.40           23.82           49.47           8.99           1.953           5.359           11.39           20.80           47.63           98.93           178.0           290.8           8.932           18.98           34.66           79.39           164.9           296.6           48.46           738.9           12.51           26.58           48.53 | Section<br>Modulus<br>Syy<br>in.<br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055<br>NDS 4.1:<br>0.938<br>1.313<br>1.688<br>2.063<br>2.719<br>3.469<br>4.219<br>4.969<br>3.646<br>4.688<br>5.729<br>7.552<br>9.635<br>5.729<br>7.552<br>9.635<br>11.72<br>13.80<br>15.89<br>7.146<br>9.188<br>11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mome           of           Inertii           ly,           it.4           0.088           0.123           0.325           0.325           0.325           0.703           0.986           1.541           2.0398           1.543           2.600           3.164           3.727           3.166           3.727           9.444           1.543           2.600           1.544           2.601           1.544           2.602           1.544           2.603           1.544           2.603           1.544           2.604           1.544           2.605           1.544           2.604           1.544           2.605           1.545           1.547           1.547           1.541           2.604           1.541           3.722           3.766           3.767           1.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ection Pro<br>x 10 (3.5'<br>rea = 13.8<br>x = 21.39                                 | opertie<br>' x 11.<br>38 in <sup>2</sup><br>in <sup>3</sup> | 25")                               | Adju                |                           |                            |                            | <u>B</u> d         | Size<br>b x d<br>b x d<br>1 x 3<br>1 x 4<br>1 x 6<br>1 x 8<br>1 x 10<br>1 x 10<br>2 x 3<br>2 x 4<br>2 x 5<br>2 x 6<br>2 x 8<br>2 x 10<br>2 x 12<br>Wn Lu                                              | D<br>Siz<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-1/<br>1-        | ressed<br>ze (SAS)<br>b x d<br>n. x in.<br>4 x 2-1/2<br>4 x 3-1/2<br>4 x 3-1/2<br>4 x 5-1/2<br>4 x 7-1/4<br>4 x 9-1/4<br>x 11-1/4<br>hber (see P<br>/2 x 2-1/2<br>(2 x 2-1/2<br>(2 x 3-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x 5-1/2<br>(2 x 5-1/2)<br>(2 x                    | of<br>Section<br>A<br>in. <sup>2</sup><br>1.875<br>2.625<br>4.125<br>5.438<br>6.938<br>8.438<br><b>JDS 4.1.3.2</b><br>3.750<br>5.250<br>6.750<br>8.250<br>10.88<br><b>J</b> <u>13.88</u><br><b>J</b> <u>13.25</u><br><b>J</b> <u>13.25</u><br><b>J</b> <u>15.75</u><br><b>J</b> <u>14.255</u><br><b>J</b> <u>15.75</u><br><b>J</b> <u>19.255</u> | Section<br>Modulus<br>S <sub>xx</sub><br>in. <sup>3</sup><br>0.781<br>1.531<br>3.781<br>6.570<br>10.70<br>15.82<br>9 and Dec<br>3.06<br>5.06<br>7.56<br>13.14<br>(21.39)<br>31.64<br>43.89<br>5.10<br>(21.39)<br>31.64<br>43.89<br>5.10<br>5.2,73<br>73.15<br>52,73<br>73.15<br>11.81<br>17.65                                                      | Moment<br>of<br>Inertia           0.gr7           2.680           10.40           23.82           49.47           88.99           1.953           5.359           11.39           20.80           47.63           98.93           178.0           290.8           34.66           79.39           164.9           296.6           484.6           738.9           12.51           26.53                                                                | Section<br>Modulus<br>Syy<br>in. <sup>3</sup><br>0.234<br>0.328<br>0.516<br>0.680<br>0.867<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>1.055<br>2.719<br>3.646<br>3.646<br>5.729<br>7.565<br>11.72<br>3.646<br>5.729<br>7.565<br>11.72<br>3.646<br>5.729<br>7.146<br>9.188<br>7.146<br>9.188<br>11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mome         of           Inertii         ly,           Inertii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

University of Michigan, TCAUP

2x10 Doug Fir S No2 M.C.<19%

### **Determine Adjustment Factors**

$$C_{r} = 1.15$$
   
 $C_{F} = 1.1$    
 $C_{M} = 1.0$  LL

### Table 4A Adjustment Factors

Repetitive Member Factor, C, Bending design values,  $F_{\rm in}$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, C, = 1.15, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load support the design load.

Wet Service Factor,  $C_M$ When dimension lumber is used where moisture con-tent will exceed <u>19%</u> for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:



Flat Use Factor, C<sub>in</sub> Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value,  $F_b$ , shall also be multiplied by the following flat use factors:

| Width       | Thickness (breadth) |      |  |  |  |
|-------------|---------------------|------|--|--|--|
| (depth)     | 2" & 3"             | 4"   |  |  |  |
| 2" & 3"     | 1.0                 | _    |  |  |  |
| 4"          | 1.1                 | 1.0  |  |  |  |
| 5"          | 1.1                 | 1.05 |  |  |  |
| 6"          | 1.15                | 1.05 |  |  |  |
| 8"          | 1.15                | 1.05 |  |  |  |
| 10" & wider | 1.2                 | 1.1  |  |  |  |

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Util-ity grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Size Factor, C<sub>F</sub> Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

|                           |               | Fb                |                   | Ft                   | Fe   |
|---------------------------|---------------|-------------------|-------------------|----------------------|------|
|                           |               | Thickness (I      | oreadth)          |                      |      |
| Grades                    | Width (depth) | 2" & 3"           | 4"                |                      |      |
|                           | 2", 3", & 4"  | 1.5               | 1.5               | 1.5                  | 1.15 |
| Select                    | 5"            | 1.4               | 1.4               | 1.4                  | 1.1  |
| Structural,               | 6"            | 1.3               | 1.3               | 1.3                  | 1.1  |
| No.1 & Btr,               | 8"            | 1.2               | 1.3               | 1.2                  | 1.05 |
| No.1, No.2,               | 10"           | 1.1               | 1.2               | 1.1                  | 1.0  |
| No.3                      | 12"           | 1.0               | 1.1               | 1.0                  | 1.0  |
|                           | 14" & wider   | 0.9               | 1.0               | 0.9                  | 0.9  |
|                           | 2", 3", & 4"  | 1.1               | 1.1               | 1.1                  | 1.05 |
| Stud                      | 5" & 6"       | 1.0               | 1.0               | 1.0                  | 1.0  |
|                           | 8" & wider    | Use No.3 Grade ta | abulated design v | alues and size facto | rs   |
| Construction,<br>Standard | 2", 3", & 4"  | 1.0               | 1.0               | 1.0                  | 1.0  |
| Utility                   | 4"            | 1.0               | 1.0               | 1.0                  | 1.0  |
|                           | 2" & 3"       | 0.4               |                   | 0.4                  | 0.6  |

University of Michigan, TCAUP

Arch 544

Slide 61 of 88

### C<sub>1</sub> Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met, CL is calculated using equation 3.3-6 The maximum allowable slenderness,  $R_B$  is 50

| Cantilever <sup>1</sup>                                                                                         | when $\ell_u/d < 7$                 | Sector Herrica State                | when $\ell_u/d \ge 7$                     |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|
| Uniformly distributed load                                                                                      | $\ell_{\rm e}$ =1.33 $\ell_{\rm u}$ |                                     | $\ell_{\rm e}=0.90 \ \ell_{\rm u}+30$     |
| Concentrated load at unsupported end                                                                            | $\ell_{\rm e}$ =1.87 $\ell_{\rm u}$ |                                     | $\ell_{\rm e} = 1.44 \ \ell_{\rm u} + 30$ |
| Single Span Beam <sup>1,2</sup>                                                                                 | when $\ell_u/d < 7$                 |                                     | when $\ell_u/d \ge 7$                     |
| Uniformly distributed load                                                                                      | $\ell_{\rm e}=2.06\ell_{\rm u}$     | in the second                       | $\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 30  |
| Concentrated load at center with no inter-<br>mediate lateral support                                           | $\ell_{\rm e}$ =1.80 $\ell_{\rm u}$ |                                     | $\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 30  |
| Concentrated load at center with lateral support at center                                                      |                                     | $\ell_{\rm e}$ =1.11 $\ell_{\rm u}$ | 20 a.u.                                   |
| Two equal concentrated loads at 1/3 points with lateral support at 1/3 points                                   |                                     | $\ell_{\rm c}$ =1.68 $\ell_{\rm u}$ |                                           |
| Three equal concentrated loads at 1/4 points with lateral support at 1/4 points                                 |                                     | $\ell_{\rm e}$ =1.54 $\ell_{\rm u}$ |                                           |
| Four equal concentrated loads at 1/5 points vith lateral support at 1/5 points                                  | ().                                 | $\ell_{\rm e}$ =1.68 $\ell_{\rm u}$ |                                           |
| Five equal concentrated loads at 1/6 points with lateral support at 1/6 points                                  |                                     | $\ell_{\rm e}$ =1.73 $\ell_{\rm u}$ |                                           |
| Six equal concentrated loads at 1/7 points vith lateral support at 1/7 points                                   |                                     | $\ell_{e}$ =1.78 $\ell_{u}$         |                                           |
| Seven or more equal concentrated loads,<br>evenly spaced, with lateral support at points<br>of load application |                                     | $\ell_e=1.84 \ \ell_u$              |                                           |
| Equal end moments                                                                                               |                                     | $\ell_{e}=1.84 \ \ell_{u}$          |                                           |

 $l_u = 5' = 60''$ d = 9.25'' Zx(0)  $\ell_{\rm u} \,/\,{\rm d} = 6.48 < 7$ 

 $\ell_{\rm e} = 2.06 \ \ell_{\rm u} = 123.6$ "

1. For single spin of cancer of the second memory with bound of the second sec

University of Michigan, TCAUP

### $C_L$ Beam Stability Factor

In the case bracing provisions of 4.4.1 cannot be met,  $C_L$  is calculated using equation 3.3-6 The maximum allowable slenderness,  $R_B$  is 50

3.3.3.6 The slenderness ratio,  $R_B$ , for bending members shall be calculated as follows:

$$\mathsf{R}_{\mathsf{B}} = \sqrt{\frac{\ell_{\mathsf{e}} \mathfrak{g}}{\mathsf{b}^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members,  $R_B$ , shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + (F_{bE}/F_{\underline{b}}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{\underline{b}}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{\underline{b}}^{*}}{0.95}}$$
(3.3-6)

where:

 $\begin{array}{l} \displaystyle \underline{F_{b}}^{*} \ = \ reference \ bending \ design \ value \ multiplied \ by \\ & all \ applicable \ adjustment \ factors \ except \ C_{fu}, \\ \displaystyle C_{V} \ (when \ C_{V} \leq 1.0), \ and \ C_{L} \ (see \ 2.3), \ psi \end{array}$ 

$$F_{bE} = \frac{1.20 \, E_{min}}{\frac{R_{B}^{2}}{2}} \, \frac{440 \, \text{cos}}{1000}$$

University of Michigan, TCAUP

Arch 544

Slide 63 of 88

# Analysis Example

Determine the Factored Allowable Stress

F'b = Fb (adjustment factors)

 $C_{D} = 1.0 \ \text{LL} \\ C_{r} = 1.15 \ \text{C} \\ C_{F} = 1.1 \ \text{C} \ \text{Lxco} \\ C_{M} = 1.0 \\ C_{L} = 0.8029 \ \text{C}$ 

|              |   | ASD<br>only          |                    |                    |                       | AS             | SD an           | d LRI           | FD                       |                         |                           |                     |                          | LRFI<br>only           | )                  |
|--------------|---|----------------------|--------------------|--------------------|-----------------------|----------------|-----------------|-----------------|--------------------------|-------------------------|---------------------------|---------------------|--------------------------|------------------------|--------------------|
|              |   | Load Duration Factor | Wet Service Factor | Temperature Factor | Beam Stability Factor | Size Factor    | Flat Use Factor | Incising Factor | Repetitive Member Factor | Column Stability Factor | Buckling Stiffness Factor | Bearing Area Factor | Format Conversion Factor | Resistance Factor      | Time Effect Factor |
| $F_b = F_b$  | x | CD                   | См                 | Ct                 | CL                    | C <sub>F</sub> | C <sub>fu</sub> | Ci              | Cr                       | -                       | -                         | -                   | K <sub>F</sub>           | фь                     | λ                  |
| $F_v' = F_v$ | x | CD                   | См                 | $C_t$              | -                     | -              | -               | $C_i$           | -                        | -                       | -                         | -                   | K <sub>F</sub>           | $\varphi_{\mathbf{v}}$ | λ                  |

 $R_{B} = \sqrt{\frac{f_{ed}}{b^{2}}} = \sqrt{\frac{123.4}{1.5^{2}}}$   $R_{B} = \sqrt{508.1} = \frac{22.54}{500} < 50$ 

F6 = 850(1.1 1,15) = 1075,25 psi

 $F_{bE} = \frac{1.20 \ E_{min}}{R_{e}^{2}} = \frac{1.20 \ (440 \ 000)}{22.54^{2}}$ 

 $|\tilde{b}_{E}/F_{b}^{*}| = \frac{1039,1}{1075,2} = 0.9664$ 

 $C_{L} = \frac{1+0.9664}{1.9} - \left[\frac{1+0.9664}{1.9}\right]^{2} - \frac{0.9664}{0.95}$ 

 $C_{L} = 1.0349 - \sqrt{1.0349^{2} - 1.0172}$ 

 $C_{L} = 1.0349 - 0.23198 = 0.8029$ 

FLE = 1039.1 PSI

F'b = 850(1.15 x 1.1 x 0.8029) = 863.3 psi

 $F'v = 180(C_D C_M C_t C_i) = 180 \text{ psi}$ 

Allowable Stresses F'b = 863.3 psi

F'v = 180 psi

|                     |                 |                  | X-)              | AXIS            | Y-1              | AXIS    |
|---------------------|-----------------|------------------|------------------|-----------------|------------------|---------|
|                     | Standard        | Area             |                  | Moment          |                  | Moment  |
| Nominal             | Dressed         | of               | Section          | of              | Section          | of      |
| Size                | Size (S4S)      | Section          | Modulus          | Inertia         | Modulus          | Inertia |
| bxd                 | bxd             | A                | Sxx              | I <sub>xx</sub> | Syy              | lyy .   |
|                     | in. x in.       | in. <sup>2</sup> | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | in.4    |
| Boards <sup>1</sup> |                 |                  |                  |                 |                  |         |
| 1 x 3               | 3/4 x 2-1/2     | 1.875            | 0.781            | 0.977           | 0.234            | 0.088   |
| 1 x 4               | 3/4 x 3-1/2     | 2.625            | 1.531            | 2.680           | 0.328            | 0.123   |
| 1 x 6               | 3/4 x 5-1/2     | 4.125            | 3.781            | 10.40           | 0.516            | 0.193   |
| 1 x 8               | 3/4 x 7-1/4     | 5.438            | 6.570            | 23.82           | 0.680            | 0.255   |
| 1 x 10              | 3/4 x 9-1/4     | 6.938            | 10.70            | 49.47           | 0.867            | 0.325   |
| 1 x 12              | 3/4 x 11-1/4    | 8.438            | 15.82            | 88.99           | 1.055            | 0.396   |
|                     | n Lumber (see N |                  |                  |                 | NDS 4.1.3        |         |
| 2 x 3               | 1-1/2 x 2-1/2   | 3.750            | 1.56             | 1.953           | 0.938            | 0.703   |
| 2 x 4               | 1-1/2 x 3-1/2   | 5.250            | 3.06             | 5.359           | 1.313            | 0.984   |
| 2 x 5               | 1-1/2 x 4-1/2   | 6.750            | 5.06             | 11.39           | 1.688            | 1.266   |
| 2 x 6               | 1-1/2 x 5-1/2   | 8.250            | 7.56             | 20.80           | 2.063            | 1.547   |
| 2 x 8               | 1-1/2 x 7-1/4   | 10.88            | 13.14            | 47.63           | 2.719            | 2.039   |
| 2 x 10              | 1-1/2 x 9-1/4   | 13.88            | 21.39            | 98.93           | 3.469            | 2.602   |
| 2 x 12              | 1-1/2 x 11-1/4  | 10.00            | 31.64            | 178.0           | 4.219            | 3.164   |
| 2 x 14              | 1-1/2 x 13-1/4  | 19.88            | 43.89            | 290.8           | 4.969            | 3.727   |
| 3 x 4               | 2-1/2 x 3-1/2   | 8.75             | 5.10             | 8.932           | 3.646            | 4.557   |
| 3 x 5               | 2-1/2 x 4-1/2   | 11.25            | 8.44             | 18.98           | 4.688            | 5.859   |
| 3 x 6               | 2-1/2 x 5-1/2   | 13.75            | 12.60            | 34.66           | 5.729            | 7.161   |
| 3 x 8               | 2-1/2 x 7-1/4   | 18.13            | 21.90            | 79.39           | 7.552            | 9.440   |
| 3 x 10              | 2-1/2 x 9-1/4   | 23.13            | 35.65            | 164.9           | 9.635            | 12.04   |
| 3 x 12              | 2-1/2 x 11-1/4  | 28.13            | 52.73            | 296.6           | 11.72            | 14.65   |
| 3 x 14              | 2-1/2 x 13-1/4  | 33.13            | 73.15            | 484.6           | 13.80            | 17.25   |
| 3 x 16              | 2-1/2 x 15-1/4  | 38.13            | 96.90            | 738.9           | 15.89            | 19.86   |
| 4 x 4               | 3-1/2 x 3-1/2   | 12.25            | 7.15             | 12.51           | 7.146            | 12.51   |
| 4 x 5               | 3-1/2 x 4-1/2   | 15.75            | 11.81            | 26.58           | 9.188            | 16.08   |
| 4 x 6               | 3-1/2 x 5-1/2   | 19.25            | 17.65            | 48.53           | 11.23            | 19.65   |
| 4 x 8               | 3-1/2 x 7-1/4   | 25.38            | 30.66            | 111.1           | 14.80            | 25.90   |
| 4 x 10              | 3-1/2 x 9-1/4   | 32.38            | 49.91            | 230.8           | 18.89            | 33.05   |
| 4 x 12              | 3-1/2 x 11-1/4  | 39.38            | 73.83            | 415.3           | 22.97            | 40.20   |
| 4 x 14              | 3-1/2 x 13-1/4  | 46.38            | 102.41           | 678.5           | 27.05            | 47.34   |
| 4 x 16              | 3-1/2 x 15-1/4  | 53.38            | 135.66           | 1034            | 31.14            | 54.49   |

 $M = F_{i}^{b} Sx$   $W_{DL} = \frac{13}{12} p_{SF} \frac{z4}{12} = 26PLF$   $W_{UL} = ?$  10'  $M = F_{i}^{b} Sx = 363.3 (21.39) = 18.466 \text{ m-1b}$   $M = F_{i}^{b} Sx = 363.3 (21.39) = 18.466 \text{ m-1b}$  = 1538.8 FT-16  $M_{e} = \frac{W}{8} = 1538.8 = 40(10)^{2}$   $W_{TOTAL} = 123.11 \text{ PLF}$   $W_{UL} = 123.11 - 26 = 97.11 \text{ PLF}$   $W_{UL} = 97.11 \frac{12}{24} = 42.55 \text{ PSF} \text{ LL}$   $M_{e} = \frac{W}{2} = \frac{(26+97.11)}{2} 10' = 615.5 \text{ LR}$   $f_{V} = \frac{3}{2} \frac{V}{A} = 1.5 \frac{615.5}{13.88} = 666.5 \text{ PSI} < 180$ 

Determine LL capacity

University of Michigan, TCAUP

Arch 544

Slide 65 of 88

# Design Procedure

Given: load, wood, span Req'd: <u>member size</u>

- 1. Find Max Shear & Moment
  - Simple case equations
  - Complex case diagrams
- 2. Estimate allowable stresses
- 3. Solve(S=M/F<sub>b</sub>'
- 4. Choose a section from Table 1B
   Revise DL and F<sub>b</sub>'
- 5. Check shear stress
  - First for V max (easier)
  - If that fails try V at d distance from support.
  - If the section still fails, choose a new section with A=1.5V/F<sub>v</sub>'
- 6. Check deflection
- 7. Check bearing

|                              |                 |         | X-1              | ( AXIS          | V-1              | AXIS        |
|------------------------------|-----------------|---------|------------------|-----------------|------------------|-------------|
|                              | Standard        | Area    | ~-/              | Moment          |                  | Moment      |
| Nominal                      | Dressed         | of      | Section          | of              | Section          | of          |
| Size                         | Size (S4S)      | Section | Modulus          | Inertia         | Modulus          | Inertia     |
| bxd                          | bxd             | A       | S <sub>xx</sub>  | I <sub>xx</sub> | S <sub>yy</sub>  | lyy         |
| 574                          |                 | in.2    | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | 'yy<br>in.4 |
| Decendar 1                   | in. x in.       | in.     | in.              | In.             | In.              | in.         |
| Boards <sup>1</sup><br>1 x 3 | 3/4 x 2-1/2     | 1.875   | 0.781            | 0.077           | 0.234            | 0.000       |
|                              |                 |         |                  | 0.977           |                  | 0.088       |
| 1 x 4                        | 3/4 x 3-1/2     | 2.625   | 1.531            | 2.680           | 0.328            | 0.123       |
| 1 x 6                        | 3/4 x 5-1/2     | 4.125   | 3.781            | 10.40           | 0.516            | 0.193       |
| 1 x 8                        | 3/4 x 7-1/4     | 5.438   | 6.570            | 23.82           | 0.680            | 0.255       |
| 1 x 10                       | 3/4 x 9-1/4     | 6.938   | 10.70            | 49.47           | 0.867            | 0.325       |
| 1 x 12                       | 3/4 x 11-1/4    | 8.438   | 15.82            | 88.99           | 1.055            | 0.396       |
|                              | n Lumber (see N |         |                  |                 | NDS 4.1.3        |             |
| 2 x 3                        | 1-1/2 x 2-1/2   | 3.750   | 1.56             | 1.953           | 0.938            | 0.703       |
| 2 x 4                        | 1-1/2 x 3-1/2   | 5.250   | 3.06             | 5.359           | 1.313            | 0.984       |
| 2 x 5                        | 1-1/2 x 4-1/2   | 6.750   | 5.06             | 11.39           | 1.688            | 1.266       |
| 2 x 6                        | 1-1/2 x 5-1/2   | 8.250   | 7.56             | 20.80           | 2.063            | 1.547       |
| 2 x 8                        | 1-1/2 x 7-1/4   | 10.88   | 13.14            | 47.63           | 2.719            | 2.039       |
| 2 x 10                       | 1-1/2 x 9-1/4   | 13.88   | 21.39            | 98.93           | 3.469            | 2.602       |
| 2 x 12                       | 1-1/2 x 11-1/4  | 16.88   | 31.64            | 178.0           | 4.219            | 3.164       |
| 2 x 14                       | 1-1/2 x 13-1/4  | 19.88   | 43.89            | 290.8           | 4.969            | 3.727       |
| 3 x 4                        | 2-1/2 x 3-1/2   | 8.75    | 5.10             | 8.932           | 3.646            | 4.557       |
| 3 x 5                        | 2-1/2 x 4-1/2   | 11.25   | 8.44             | 18.98           | 4.688            | 5.859       |
| 3 x 6                        | 2-1/2 x 5-1/2   | 13.75   | 12.60            | 34.66           | 5.729            | 7.161       |
| 3 x 8                        | 2-1/2 x 7-1/4   | 18.13   | 21.90            | 79.39           | 7.552            | 9.440       |
| 3 x 10                       | 2-1/2 x 9-1/4   | 23.13   | 35.65            | 164.9           | 9.635            | 12.04       |
| 3 x 12                       | 2-1/2 x 11-1/4  | 28.13   | 52.73            | 296.6           | 11.72            | 14.65       |
| 3 x 14                       | 2-1/2 x 13-1/4  | 33.13(  | 73.15            | 484.6           | 13.80            | 17.25       |
| 3 x 16                       | 2-1/2 x 15-1/4  | 38.13   | 96.90            | 738.9           | 15.89            | 19.86       |
| 4 x 4                        | 3-1/2 x 3-1/2   | 12.25   | 7.15             | 12.51           | 7.146            | 12.51       |
| 4 x 5                        | 3-1/2 x 4-1/2   | 15.75   | 11.81            | 26.58           | 9.188            | 16.08       |
| 4 x 6                        | 3-1/2 x 5-1/2   | 19.25   | 17.65            | 48.53           | 11.23            | 19.65       |
| 4 x 8                        | 3-1/2 x 7-1/4   | 25.38   | 30.66            | 111.1           | 14.80            | 25.90       |
| 4 x 10                       | 3-1/2 x 9-1/4   | 32.38   | 49.91            | 230.8           | 18.89            | 33.05       |
| 4 x 12                       | 3-1/2 x 11-1/4  | 39.38   | 73.83            | 415.3           | 22.97            | 40.20       |
| 4 x 14                       | 3-1/2 x 13-1/4  | 46.38   | 102.41           | 678.5           | 27.05            | 47.34       |
| 4 x 16                       | 3-1/2 x 15-1/4  | 53.38   | 135.66           | 1034            | 31.14            | 54.49       |



F'<sub>b</sub> = <u>1000</u> psi F'<sub>v</sub> = 100 psi

Solve S=M/F<sub>b</sub>' 3.



Choose a section from S table 4. Revise DL and F<sub>b</sub>' •

| Doarus            |                 |            |            |           |           |       |
|-------------------|-----------------|------------|------------|-----------|-----------|-------|
| 1 x 3             | 3/4 x 2-1/2     | 1.875      | 0.781      | 0.977     | 0.234     | 0.088 |
| 1 x 4             | 3/4 x 3-1/2     | 2.625      | 1.531      | 2.680     | 0.328     | 0.123 |
| 1 x 6             | 3/4 x 5-1/2     | 4.125      | 3.781      | 10.40     | 0.516     | 0.193 |
| 1 x 8             | 3/4 x 7-1/4     | 5.438      | 6.570      | 23.82     | 0.680     | 0.255 |
| 1 x 10            | 3/4 x 9-1/4     | 6.938      | 10.70      | 49.47     | 0.867     | 0.325 |
| 1 x 12            | 3/4 x 11-1/4    | 8.438      | 15.82      | 88.99     | 1.055     | 0.396 |
| Dimensio          | n Lumber (see N | DS 4.1.3.2 | 2) and Dec | king (see | NDS 4.1.3 | 3.5)  |
| 2 x 3             | 1-1/2 x 2-1/2   | 3.750      | 1.56       | 1.953     | 0.938     | 0.703 |
| 2 x 4             | 1-1/2 x 3-1/2   | 5.250      | 3.06       | 5.359     | 1.313     | 0.984 |
| 2 x 5             | 1-1/2 x 4-1/2   | 6.750      | 5.06       | 11.39     | 1.688     | 1.266 |
| 2 x 6             | 1-1/2 x 5-1/2   | 8.250      | 7.56       | 20.80     | 2.063     | 1.547 |
| 2 x 8             | 1-1/2 x 7-1/4   | 10.88      | 13.14      | 47.63     | 2.719     | 2.039 |
| 2 x 10            | 1-1/2 x 9-1/4   | 13.88      | 21.39      | 98.93     | 3.469     | 2.602 |
| <sup>2</sup> x 12 | 1-1/2 x 11-1/4  | 16/88      | 31.64      | 178.0     | 4.219     | 3.164 |
| 2 x 14            | 1-1/2 x 13-1/4  | 19.88      | 43.89      | 290.8     | 4.969     | 3.727 |
| 3 x 4             | 2-1/2 x 3-1/2   | 8.75       | 5.10       | 8.932     | 3.646     | 4.557 |
| 3 x 5             | 2-1/2 x 4-1/2   | 11.25      | 8.44       | 18.98     | 4.688     | 5.859 |
| 3 x 6             | 2-1/2 x 5-1/2   | 13.75      | 12.60      | 34.66     | 5.729     | 7.161 |
| 3 x 8             | 2-1/2 x 7-1/4   | 18.13      | 21.90      | 79.39     | 7.552     | 9.440 |
| 3 x 10            | 2-1/2 x 9-1/4   | 23.13      | 35.65      | 164.9     | 9.635     | 12.04 |
| 3 x 12            | 2-1/2 x 11-1/4  | 28.13      | 52.73      | 296.6     | 11.72     | 14.65 |
| 3 x 14            | 2-1/2 x 13-1/4  | 33.13      | 73.15      | 484.6     | 13.80     | 17.25 |
| 3 x 16            | 2-1/2 x 15-1/4  | 38.13      | 96.90      | 738.9     | 15.89     | 19.86 |
| 4 x 4             | 3-1/2 x 3-1/2   | 12.25      | 7.15       | 12.51     | 7.146     | 12.51 |
| 4 x 5             | 3-1/2 x 4-1/2   | 15.75      | 11.81      | 26.58     | 9.188     | 16.08 |
| 4 x 6             | 3-1/2 x 5-1/2   | 19.25      | 17.65      | 48.53     | 11.23     | 19.65 |
| 4 x 8             | 3-1/2 x 7-1/4   | 25.38      | 30.66      | 111.1     | 14.80     | 25.90 |
| 4 x 10            | 3-1/2 x 9-1/4   | 32.38      | 49.91      | 230.8     | 18.89     | 33.05 |
| 4 x 12            | 3-1/2 x 11-1/4  | 39.38      | 73.83      | 415.3     | 22.97     | 40.20 |
| 4 x 14            | 3-1/2 x 13-1/4  | 46.38      | 102.41     | 678.5     | 27.05     | 47.34 |
| 4 x 16            | 3-1/2 x 15-1/4  | 53.38      | 135.66     | 1034      | 31.14     | 54.49 |
|                   |                 |            |            |           |           |       |

2×10



| DATASET: 1 -23-        |         |
|------------------------|---------|
| Wood Species           | HEM-FIR |
| Wood Grade             | No.1 🗂  |
| Span                   | 20 FT   |
| Joist Spacing, o.c.    | 12 IN   |
| Moisture Content, m.c. | 15 %    |
| Floor DL               | 7 PSF   |
| Floor LL               | 35 PSF  |
|                        |         |

JOISTS

### Determine allowable stresses

• F<sub>b</sub> and F<sub>v</sub> (from NDS)

#### **Table 4A Reference Design Values for Visually Graded Dimension Lumber** (Cont.) (2" - 4" thick)1,2,3

(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

|                              |                        | USE            | WITH TAE                        | BLE 4A A                      | DJUSTMENT                                | FACTORS                             |           |              |                                  |                            |
|------------------------------|------------------------|----------------|---------------------------------|-------------------------------|------------------------------------------|-------------------------------------|-----------|--------------|----------------------------------|----------------------------|
|                              | 5-                     |                |                                 | Design va                     | alues in pounds p                        | er square inch (p                   | osi)      |              | · · · · ·                        |                            |
| Species and commercial grade | Size<br>classification | Bending        | Tension<br>parallel<br>to grain | Shear<br>parallel<br>to grain | Compression<br>perpendicular<br>to grain | Compression<br>parallel<br>to grain | Modulus o | f Elasticity | Specific<br>Gravity <sup>4</sup> | Grading<br>Rules<br>Agency |
|                              |                        | F <sub>b</sub> | F,                              | Fv                            | F₀⊥                                      | F。                                  | E         | Emin         | G                                |                            |
| HEM-FIR                      |                        |                |                                 |                               |                                          |                                     |           |              |                                  |                            |
| Select Structural            |                        | 1,400          | 925                             | 150                           | 405                                      | 1,500                               | 1,600,000 | 580,000      |                                  |                            |
| No. 1 & Btr                  |                        | 1,100          | 725                             | 150                           | 405                                      | 1,350                               | 1,500,000 | 550,000      |                                  |                            |
| No. 1                        | 2" & wider             | 975<br>850     | 625                             | 150<br>150                    | 405                                      | 1,350                               | 1,500,000 | 550,000      |                                  |                            |
| No. 2                        |                        | 850            | 525                             | 150                           | 405                                      | 1,300                               | 1,300,000 | 470,000      |                                  | WCLIB                      |
| No. 3                        |                        | 500            | 300                             | 150                           | 405                                      | 725                                 | 1,200,000 | 440,000      | 0.43                             | WWPA                       |
| Stud                         | 2" & wider             | 675            | 400                             | 150                           | 405                                      | 800                                 | 1,200,000 | 440,000      |                                  | VVVPA                      |
| Construction                 |                        | 975            | 600                             | 150                           | 405                                      | 1,550                               | 1,300,000 | 470,000      | 1                                |                            |
| Standard                     | 2" - 4" wide           | 550            | 325                             | 150                           | 405                                      | 1,300                               | 1,200,000 | 440,000      |                                  |                            |
| Utility                      |                        | 250            | 150                             | 150                           | 405                                      | 850                                 | 1,100,000 | 400,000      |                                  |                            |

University of Michigan, TCAUP

Arch 544

Slide 71 of 88

Flat Use Factor,  $C_{th}$ Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value,  $F_{s}$ , shall also be multiplied by the following flat use factors:

Flat Use Factors, Cn

2" & 3"

1.0 1.1 1.1 1.15 1.15

1.2

NOTE

NOTE To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Uti-ity grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Thickness (breadth)

4"

1.0 1.05 1.05 1.05

1.1

Width

(depth)

2" & 3" 4" 5" 6"

10" & wider

# **Design Example**

### Determine allowable stresses

|                     |                 |            | X-)              | ( AXIS          | Y-۱              | AXIS    |
|---------------------|-----------------|------------|------------------|-----------------|------------------|---------|
|                     | Standard        | Area       |                  | Moment          |                  | Moment  |
| Nominal             | Dressed         | of         | Section          | of              | Section          | of      |
| Size                | Size (S4S)      | Section    | Modulus          | Inertia         | Modulus          | Inertia |
| b x d               | bxd             | A          | S <sub>xx</sub>  | I <sub>xx</sub> | S <sub>yy</sub>  | lyy     |
|                     | in. x in.       | in.2       | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | in.4    |
| Boards <sup>1</sup> |                 |            |                  |                 |                  |         |
| 1 x 3               | 3/4 x 2-1/2     | 1.875      | 0.781            | 0.977           | 0.234            | 0.088   |
| 1 x 4               | 3/4 x 3-1/2     | 2.625      | 1.531            | 2.680           | 0.328            | 0.123   |
| 1 x 6               | 3/4 x 5-1/2     | 4.125      | 3.781            | 10.40           | 0.516            | 0.193   |
| 1 x 8               | 3/4 x 7-1/4     | 5.438      | 6.570            | 23.82           | 0.680            | 0.255   |
| 1 x 10              | 3/4 x 9-1/4     | 6.938      | 10.70            | 49.47           | 0.867            | 0.325   |
| 1 x 12              | 3/4 x 11-1/4    | 8.438      | 15.82            | 88.99           | 1.055            | 0.396   |
| Dimensio            | n Lumber (see N | DS 4.1.3.2 | 2) and Dec       | king (see       | NDS 4.1.3        | .5)     |
| 2 x 3               | 1-1/2 x 2-1/2   | 3.750      | 1.56             | 1.953           | 0.938            | 0.703   |
| 2 x 4               | 1-1/2 x 3-1/2   | 5.250      | 3.06             | 5.359           | 1.313            | 0.984   |
| 2 x 5               | 1-1/2 x 4-1/2   | 6.750      | 5.06             | 11.39           | 1.688            | 1.266   |
| 2 x 6               | 1-1/2 x 5-1/2   | 8.250      | 7.56             | 20.80           | 2.063            | 1.547   |
| 2 x 8               | 1-1/2 x 7-1/4   | 10.88      | 13.14            | 47.63           | 2.719            | 2.039   |
| 2 x 10              | 1-1/2 x 9-1/4   | 13.88      | 21.39            | 98.93           | 3.469            | 2.602   |
| 2 x 12              | 1-1/2 x 11-1/4  | 16.88      | 31.64            | 178.0           | 4.219            | 3.164   |
| 2 x 14              | 1-1/2 x 13-1/4  | 19.88      | 43.89            | 290.8           | 4.969            | 3.727   |
| 3 x 4               | 2-1/2 x 3-1/2   | 8.75       | 5.10             | 8.932           | 3.646            | 4.557   |
| 3 x 5               | 2-1/2 x 4-1/2   | 11.25      | 8.44             | 18.98           | 4.688            | 5.859   |
| 3 x 6               | 2-1/2 x 5-1/2   | 13.75      | 12.60            | 34.66           | 5.729            | 7.161   |
| 3 x 8               | 2-1/2 x 7-1/4   | 18.13      | 21.90            | 79.39           | 7.552            | 9.440   |
| 3 x 10              | 2-1/2 x 9-1/4   | 23.13      | 35.65            | 164.9           | 9.635            | 12.04   |
| 3 x 12              | 2-1/2 x 11-1/4  | 28.13      | 52.73            | 296.6           | 11.72            | 14.65   |
| 3 x 14              | 2-1/2 x 13-1/4  | 33.13      | 73.15            | 484.6           | 13.80            | 17.25   |
| 3 x 16              | 2-1/2 x 15-1/4  | 38.13      | 96.90            | 738.9           | 15.89            | 19.86   |
| 4 x 4               | 3-1/2 x 3-1/2   | 12.25      | 7.15             | 12.51           | 7.146            | 12.51   |
| 4 x 5               | 3-1/2 x 4-1/2   | 15.75      | 11.81            | 26.58           | 9.188            | 16.08   |
| 4 x 6               | 3-1/2 x 5-1/2   | 19.25      | 17.65            | 48.53           | 11.23            | 19.65   |
| 4 x 8               | 3-1/2 x 7-1/4   | 25.38      | 30.66            | 111.1           | 14.80            | 25.90   |
| 4 x 10              | 3-1/2 x 9-1/4   | 32.38      | 49.91            | 230.8           | 18.89            | 33.05   |
| 4 x 12              | 3-1/2 x 11-1/4  | 39.38      | 73.83            | 415.3           | 22.97            | 40.20   |
| 4 x 14              | 3-1/2 x 13-1/4  | 46.38      | 102.41           | 678.5           | 27.05            | 47.34   |
| 4 x 16              | 3-1/2 x 15-1/4  | 53.38      | 135.66           | 1034            | 31.14            | 54.49   |

University of Michigan, TCAUP

#### Table 4A Adjustment Factors

#### Repetitive Member Factor, C.

Repetitive Member Factor,  $C_r$ Bending design values,  $F_b$ , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor,  $C_r = 1.15$ , when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, C<sub>M</sub> When dimension lumber is used where moisture conwhen dimension lumber is used where moisture con-tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

# Wet Service Factors, C<sub>M</sub> $\label{eq:results} \begin{array}{|c|c|c|c|c|c|} \hline F_{b} & F_{c} & F_{c} & F_{c} & E \mbox{ and } F_{min} \\ \hline 0.85^{*} & 1.0 & 0.97 & 0.67 & 0.8^{**} & 0.9 \\ \hline ^{*} \mbox{ when } (F_{b}(C_{c}) \leq 1.150 \mbox{ psi}, C_{w} = 1.0 \\ \hline \end{tabular}$

?

Size Factor Cr . Tabulated conding, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

|                           |               | Fb                |                  | Ft                   | Fc   |
|---------------------------|---------------|-------------------|------------------|----------------------|------|
|                           |               | Thickness (I      | oreadth)         |                      |      |
| Grades                    | Width (depth) | 2" & 3"           | 4"               |                      |      |
|                           | 2", 3", & 4"  | 1.5               | 1.5              | 1.5                  | 1.15 |
| Select                    | 5"            | 1.4               | 1.4              | 1.4                  | 1.1  |
| Structural,               | 6"            | 1.3               | 1.3              | 1.3                  | 1.1  |
| No.1 & Btr,               | 8"            | . 1.2             | 1.3              | 1.2                  | 1.05 |
| No.1, No.2,               | 10"           | . 1.1             | 1.2              | 1.1                  | 1.0  |
| No.3                      | 12"           | 1.0               | 1.1              | 1.0                  | 1.0  |
|                           | 14" & wider   | 0.9               | 1.0              | 0.9                  | 0.9  |
|                           | 2", 3", & 4"  | 1.1               | 1.1              | 1.1                  | 1.05 |
| Stud                      | 5" & 6"       | 1.0               | 1.0              | 1.0                  | 1.0  |
|                           | 8" & wider    | Use No.3 Grade ta | bulated design v | alues and size facto | rs   |
| Construction,<br>Standard | 2", 3", & 4"  | 1.0               | 1.0              | 1.0                  | 1.0  |
| Utility                   | 4"            | 1.0               | 1.0              | 1.0                  | 1.0  |
|                           | 2" & 3"       | 0.4               |                  | 0.4                  | 0.6  |

Arch 544

Determine allowable stresses.

Since the size is not known you have to skip  $C_F$  (or make a guess).

$$F_{b}^{1} = F_{b} (FACIORS)$$

$$= 975 (I.0 \times 1.15 \times 1.0 \times C_{F}?) \approx IIZI psi$$

$$C_{v} \qquad C_{r} \qquad GKI$$

$$F_{v}^{1} = F_{v} (C_{v}, C_{M}, C_{k}, C_{i})$$

$$= 150 (I.0 \times 1.0 \times 1.0 \times 1.0) = 150 psi$$

University of Michigan, TCAUP

# Design Example

Determine moment from loading.

First find the uniform beam load, w, from the floor loading.

$$\frac{\omega}{(7+35)} = \frac{0.c.}{12} = PLF$$

$$(\frac{1}{7+35}) = \frac{12}{12} = \frac{42}{12} PLF$$

With the beam loading, calculate the maximum moment.

$$M = \frac{\omega f^{2}}{8} = \frac{42(20')^{2}}{8} = \frac{2100}{1-4}$$

Arch 544

Slide 73 of 88

Estimate the Required Section Modulus.

$$S_{x} = \frac{H}{F_{b}^{1}} = \frac{2100(12)}{1121} = 22.47 \text{ m}^{3}$$

Compare this required Sx to the actual Sx of available sections in NDS Table 1B. Remember CF will be multiplied which may make some pass which at first fail.

University of Michigan, TCAUP

Arch 544

Slide 75 of 88

# **Design Example**

Choose a section and test it (by analysis with all factors including C<sub>F</sub>)

|                     |                 |         | X-)              | ( AXIS          | Y-1              | AXIS            |
|---------------------|-----------------|---------|------------------|-----------------|------------------|-----------------|
|                     | Standard        | Area    |                  | Moment          |                  | Moment          |
| Nominal             | Dressed         | of      | Section          | of              | Section          | of              |
| Size                | Size (S4S)      | Section | Modulus          | Inertia         | Modulus          | Inertia         |
| b x d               | bxd             | Α       | S <sub>xx</sub>  | I <sub>xx</sub> | Syy              | I <sub>vv</sub> |
|                     | in. x in.       | in.2    | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | in.4            |
| Boards <sup>1</sup> |                 |         |                  |                 |                  |                 |
| 1 x 3               | 3/4 x 2-1/2     | 1.875   | 0.781            | 0.977           | 0.234            | 0.088           |
| 1 x 4               | 3/4 x 3-1/2     | 2.625   | 1.531            | 2.680           | 0.328            | 0.123           |
| 1 x 6               | 3/4 x 5-1/2     | 4.125   | 3.781            | 10.40           | 0.516            | 0.193           |
| 1 x 8               | 3/4 x 7-1/4     | 5.438   | 6.570            | 23.82           | 0.680            | 0.255           |
| 1 x 10              | 3/4 x 9-1/4     | 6.938   | 10.70            | 49.47           | 0.867            | 0.325           |
| 1 x 12              | 3/4 x 11-1/4    | 8.438   | 15.82            | 88.99           | 1.055            | 0.396           |
|                     | n Lumber (see N |         |                  |                 |                  |                 |
| 2 x 3               | 1-1/2 x 2-1/2   | 3.750   | 1.56             | 1.953           | 0.938            | 0.703           |
| 2 x 4               | 1-1/2 x 3-1/2   | 5.250   | 3.06             | 5.359           | 1.313            | 0.984           |
| 2 x 5               | 1-1/2 x 4-1/2   | 6.750   | 5.06             | 11.39           | 1.688            | 1.266           |
| 2 x 6               | 1-1/2 x 5-1/2   | 8.250   | 7.56             | 20.80           | 2.063            | 1.547           |
| 2 x 8               | 1-1/2 x 7-1/4   | 10.88   | 13.14            | 47.63           | 2.719            | 2.039           |
| 2 x 10              | 1-1/2 x 9-1/4   | 13.88   | 21.39            | 98.93           | 3.469            | 2.602           |
| 2 x 12              | 1-1/2 x 11-1/4  | 16.88   | 31.64            | 178.0           | 4.219            | 3.164           |
| 2 x 14              | 1-1/2 x 13-1/4  | 19.88   | 43.89            | 290.8           | 4.969            | 3.727           |
| 3 x 4               | 2-1/2 x 3-1/2   | 8.75    | 5.10             | 8.932           | 3.646            | 4.557           |
| 3 x 5               | 2-1/2 x 4-1/2   | 11.25   | 8.44             | 18.98           | 4.688            | 5.859           |
| 3 x 6               | 2-1/2 x 5-1/2   | 13.75   | 12.60            | 34.66           | 5.729            | 7.161           |
| 3 x 8               | 2-1/2 x 7-1/4   | 18.13   | 21.90            | 79.39           | 7.552            | 9.440           |
| 3 x 10              | 2-1/2 x 9-1/4   | 23.13   | 35.65            | 164.9           | 9.635            | 12.04           |
| 3 x 12              | 2-1/2 x 11-1/4  | 28.13   | 52.73            | 296.6           | 11.72            | 14.65           |
| 3 x 14              | 2-1/2 x 13-1/4  | 33.13   | 73.15            | 484.6           | 13.80            | 17.25           |
| 3 x 16              | 2-1/2 x 15-1/4  | 38.13   | 96.90            | 738.9           | 15.89            | 19.86           |
| 4 x 4               | 3-1/2 x 3-1/2   | 12.25   | 7.15             | 12.51           | 7.146            | 12.51           |
| 4 x 5               | 3-1/2 x 4-1/2   | 15.75   | 11.81            | 26.58           | 9.188            | 16.08           |
| 4 x 6               | 3-1/2 x 5-1/2   | 19.25   | 17.65            | 48.53           | 11.23            | 19.65           |
| 4 x 8               | 3-1/2 x 7-1/4   | 25.38   | 30.66            | 111.1           | 14.80            | 25.90           |
| 4 x 10              | 3-1/2 x 9-1/4   | 32.38   | 49.91            | 230.8           | 18.89            | 33.05           |
| 4 x 12              | 3-1/2 x 11-1/4  | 39.38   | 73.83            | 415.3           | 22.97            | 40.20           |
| 4 x 14              | 3-1/2 x 13-1/4  | 46.38   | 102.41           | 678.5           | 27.05            | 47.34           |
| 4 x 16              | 3-1/2 x 15-1/4  | 53.38   | 135.66           | 1034            | 31.14            | 54.49           |

$$TRY = \frac{2 \times 10}{F_{b}} = 975(1,15 \ 1,1) = \frac{1233.3}{1233.3} \ Psi$$

$$f_{.b} = \frac{M}{S_{x}} = \frac{2100(12)}{(21.39)} = \frac{1178}{Psi} \ Size = \frac{1233}{Psi} \ Size = \frac{1155}{13.88} = \frac{45.39}{Psi} \ Size = \frac{150}{VOK}$$

$$i. USE 2 \times 10$$

University of Michigan, TCAUP

### Check Deflection

In this case LL only against IBC code limit of L/360 For short term load there is no creep factor Kcr

### TABLE 1604.3 DEFLECTION LIMITS<sup>a, b, c, h, i</sup>

LU = 35 PSF = 35 PLF

| CONSTRUCTION                                                                                                                  | L                       | S or W <sup>f</sup>     | $D + L^{d,g}$           |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Roof members: <sup>e</sup><br>Supporting plaster or stucco ceiling<br>Supporting nonplaster ceiling<br>Not supporting ceiling | //360<br>//240<br>//180 | //360<br>//240<br>//180 | //240<br>//180<br>//120 |
| Floor members                                                                                                                 | //360                   | —                       | //240                   |
| Exterior walls:<br>With plaster or stucco finishes<br>With other brittle finishes<br>With flexible finishes                   |                         | //360<br>//240<br>//120 |                         |
| Interior partitions: <sup>b</sup><br>With plaster or stucco finishes<br>With other brittle finishes<br>With flexible finishes | //360<br>//240<br>//120 |                         |                         |
| Farm buildings                                                                                                                | -                       | —                       | //180                   |
| Greenhouses                                                                                                                   | -                       |                         | //120                   |

$$\Delta_{LL} = \frac{5\omega l^{4}}{384 \text{ EL}} = \frac{5(35)(20)^{4}(1728)}{384 (1500000)(98.93)} = 0.849''$$
  
$$\Delta_{LIMIT} \frac{L}{360} = \frac{20'(12)}{360} = 0.667''$$
  
$$0.849 > 0.667 : FAILS$$

International Building Code (IBC)

University of Michigan, TCAUP

Arch 544

Slide 77 of 88

# Timber Beam Design

### Given: load, wood, span

Req'd: member size (in this example both b and d)





From NDS Supplement: Coast Sitka Spruce <u>No2</u>

Table 4D

### Reference Design Values for Visually Graded Timbers (5" x 5" and larger)<sup>1,3</sup>

 (Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

F<sub>V</sub> = 115 PSI E = 1200000 PSI Emin 440000 PSI

|                                   |                        | USEW                                          | /ITH TAB                        | LE 4D AI                      | DJUSTMENT                                | FACTORS                             | 2                                   |                               |                                  |                            |
|-----------------------------------|------------------------|-----------------------------------------------|---------------------------------|-------------------------------|------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|----------------------------------|----------------------------|
|                                   |                        | Design values in pounds per square inch (psi) |                                 |                               |                                          |                                     |                                     |                               |                                  |                            |
| Species and commercial<br>Grade   | Size<br>classification | Bending                                       | Tension<br>parallel<br>to grain | Shear<br>parallel<br>to grain | Compression<br>perpendicular<br>to grain | Compression<br>parallel<br>to grain | Modulus o                           | f Elasticity                  | Specific<br>Gravity <sup>4</sup> | Grading<br>Rules<br>Agency |
|                                   |                        | Fb                                            | Ft                              | Fv                            | Fc⊥                                      | Fc                                  | E                                   | Emin                          | G                                |                            |
| COAST SITKA SPRUCE                |                        |                                               |                                 |                               |                                          |                                     |                                     |                               |                                  |                            |
| Select Structural<br>No.1<br>No.2 | Beams and<br>Stringers | 1,150<br>950<br>625                           | 675<br>475<br>325               | 115<br>115<br>115             | 455<br>455<br>455                        | 775<br>650<br>425                   | 1,500,000<br>1,500,000<br>1,200,000 | 550,000<br>550,000<br>440,000 |                                  |                            |
| Select Structural<br>No.1<br>No.2 | Posts and<br>Timbers   | 1,100<br>875<br>525                           | 725<br>575<br>350               | 115<br>115<br>115             | 455<br>455<br>455                        | 825<br>725<br>500                   | 1,500,000<br>1,500,000<br>1,200,000 | 550,000<br>550,000<br>440,000 | 0.43                             | NLGA                       |

TRY 1

Trial 1: choose Sx and size

Sx = M / Fb

 $F_{b}^{T} \approx F_{b} = 625 \text{ PSI}$   $S_{x} = \frac{M}{F} = \frac{53428(12)}{625731} = 1025 \text{ m}^{3}$   $\frac{12 \times 24}{S_{x}} = 1058 \text{ m}^{2}$   $A = 270 \text{ m}^{2}$ 

| -       |                  |                  | X-)              | ( AXIS          | Y-1              | AXIS    |                        |                        |                        |            |                        |            |  |
|---------|------------------|------------------|------------------|-----------------|------------------|---------|------------------------|------------------------|------------------------|------------|------------------------|------------|--|
|         | Standard         | Area             |                  | Moment          |                  | Moment  | Appro                  | ximate we              | eight in po            | ounds per  | linear foo             | t (lbs/ft) |  |
| Nominal | Dressed          | of               | Section          | of              | Section          | of      |                        | of piece when den      |                        |            | nsity of wood equals:  |            |  |
| Size    | Size (S4S)       | Section          | Modulus          | Inertia         | Modulus          | Inertia |                        |                        |                        |            |                        |            |  |
| bxd     | bxd              | Α                | S <sub>xx</sub>  | I <sub>xx</sub> | Śyy              | lyy     | 25 lbs/ft <sup>3</sup> | 30 lbs/ft <sup>3</sup> | 35 lbs/ft <sup>3</sup> | 40 lbs/ft° | 45 lbs/ft <sup>3</sup> | 50 lbs/ft  |  |
|         | in. x in.        | in. <sup>2</sup> | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | in.4    |                        |                        |                        |            |                        |            |  |
| Beams & | Stringers (see N | DS 4.1.3.3       | and NDS          | 4.1.5.3)        |                  |         |                        |                        |                        |            |                        |            |  |
| 10 x 14 | 9-1/2 x 13-1/2   | 128.3            | 288.6            | 1948            | 203.1            | 964.5   | 22.27                  | 26.72                  | 31.17                  | 35.63      | 40.08                  | 44.53      |  |
| 10 x 16 | 9-1/2 x 15-1/2   | 147.3            | 380.4            | 2948            | 233.1            | 1107    | 25.56                  | 30.68                  | 35.79                  | 40.90      | 46.02                  | 51.13      |  |
| 10 x 18 | 9-1/2 x 17-1/2   | 166.3            | 484.9            | 4243            | 263.2            | 1250    | 28.86                  | 34.64                  | 40.41                  | 46.18      | 51.95                  | 57.73      |  |
| 10 x 20 | 9-1/2 x 19-1/2   | 185.3            | 602.1            | 5870            | 293.3            | 1393    | 32.16                  | 38.59                  | 45.03                  | 51.46      | 57.89                  | 64.32      |  |
| 10 x 22 | 9-1/2 x 21-1/2   | 204.3            | 731.9            | 7868            | 323.4            | 1536    | 35.46                  | 42.55                  | 49.64                  | 56.74      | 63.83                  | 70.92      |  |
| 10 x 24 | 9-1/2 x 23-1/2   | 223.3            | 874.4            | 10274           | 353.5            | 1679    | 38.76                  | 46.51                  | 54.26                  | 62.01      | 69.77                  | 77.52      |  |
| 12 x 16 | 11-1/2 x 15-1/2  | 178.3            | 460.5            | 3569            | 341.6            | 1964    | 30.95                  | 37.14                  | 43.32                  | 49.51      | 55.70                  | 61.89      |  |
| 12 x 18 | 11-1/2 x 17-1/2  | 201.3            | 587.0            | 5136            | 385.7            | 2218    | 34.94                  | 41.93                  | 48.91                  | 55.90      | 62.89                  | 69.88      |  |
| 12 x 20 | 11-1/2 x 19-1/2  | 224.3            | 728.8            | 7106            | 429.8            | 2471    | 38.93                  | 46.72                  | 54.51                  | 62.29      | 70.08                  | 77.86      |  |
| 12 x 22 | 11-1/2 x 21-1/2  | 247.3            | 886.0            | 9524            | 473.9            | 2725    | 42.93                  | 51.51                  | 60.10                  | 68.68      | 77.27                  | 85.85      |  |
|         | 11-1/2 x 23-1/2  | 270.3            | 1058             | 12437           | 518.0            | 2978    | 46.92                  | 56.30                  | 65.69                  | 75.07      | 84.45                  | 93.84      |  |
| 14 x 18 | 13-1/2 x 17-1/2  | 236.3            | 689.1            | 6029            | 531.6            | 3588    | 41.02                  | 49.22                  | 57.42                  | 65.63      | 73.83                  | 82.03      |  |
| 14 x 20 | 13-1/2 x 19-1/2  | 263.3            | 855.6            | 8342            | 592.3            | 3998    | 45.70                  | 54.84                  | 63.98                  | 73.13      | 82.27                  | 91.41      |  |
| 14 x 22 | 13-1/2 x 21-1/2  | 290.3            | 1040             | 11181           | 653.1            | 4408    | 50.39                  | 60.47                  | 70.55                  | 80.63      | 90.70                  | 100.8      |  |
| 14 x 24 | 13-1/2 x 23-1/2  | 317.3            | 1243             | 14600           | 713.8            | 4818    | 55.08                  | 66.09                  | 77.11                  | 88.13      | 99.14                  | 110.2      |  |

# Timber Beam Design

Trial 1: 12 x 24 m.c. < 19% not flat use

### Table 4D Adjustment Factors

### Size Factor, $C_{\rm F}$

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

| Depth        | For            | Ft  | Fc  |
|--------------|----------------|-----|-----|
| 24 $d > 12"$ | $(12/d)^{1/9}$ | 1.0 | 1.0 |
| $d \le 12"$  | 1.0            | 1.0 | 1.0 |

### Flat Use Factor, C<sub>fu</sub>

When members classified as Beams and Stringers\* in Table 4D are subjected to loads applied to the wide face, tabulated design values shall be multiplied by the following flat use factors:

Flat Use Factor, C<sub>fu</sub>

| Grade             | F <sub>b</sub> | E and E <sub>min</sub> | Other Properties |
|-------------------|----------------|------------------------|------------------|
| Select Structural | 0.86           | 1.00                   | 1.00             |
| No.1              | 0.74           | 0.90                   | 1.00             |
| No.2              | 1.00           | 1.00                   | 1.00             |

\*"Beams and Stringers" are defined in NDS 4.1.3 (also see Table 1B).

### Wet Service Factor, C<sub>M</sub>

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

| Wet | Service | Factors, | См |
|-----|---------|----------|----|
|-----|---------|----------|----|

| F <sub>b</sub> | $\mathbf{F}_{t}$ | $\mathbf{F}_{\mathbf{v}}$ | $F_{c\perp}$ | $F_{c}$ | $E \mbox{ and } E_{\mbox{min}}$ |
|----------------|------------------|---------------------------|--------------|---------|---------------------------------|
| 1.00           | 1.00             | 1.00                      | 0.67         | 0.91    | 1.00                            |



Trial 1: 12 x 24

Adjustment Factors:

 $\mathbf{C}_{\mathsf{L}}$ 

Table 3.3.3 "Concentrated load at center with lateral support at center" le = 1.11 lu

$$C_{L}: e_{L}.$$

$$I_{0} = \frac{9.5}{9.5} \cdot I_{0}/d = \frac{4.851}{235}$$

$$I_{e} = 1.11 \cdot I_{0} \cdot T_{AB} = 3.3.3.$$

$$= 1.11 \cdot I_{0} \cdot I_{AB} = 1.26.5 \cdot I_{0}$$

$$R_{B} = -\sqrt{\frac{I_{ed}}{b^{2}}} = \frac{4.74}{4.74}$$

$$\frac{F_{bE}}{F_{b}E} = \frac{1.2}{R_{B}^{2}} = \frac{1.2(440000)}{4.74^{2}} = 2.3482 \text{ psi}$$

$$F_{b} = F_{b} \cdot (C_{F}) = 65 \cdot (0.928) = 580$$

$$\frac{F_{b}e}{F_{b}} = \frac{40.5}{4.76} \cdot \frac{C_{L}}{3.3-6} \cdot \frac{1.2}{4.799}$$

$$C_{L} = 0.999$$

University of Michigan, TCAUP

Arch 544

Slide 83 of 88

# Timber Beam Design

Trial 1: 12 x 24 Sx = 1058 in<sup>3</sup> A = 270 in<sup>2</sup>

TRY 1 CONT.  
12×24 
$$C_F = 0.928$$
  $C_L = 0.999$   $C_D = 1.0$   
 $F_D' = F_D(C_D C_F C_L) = 625(1 0.928 0.999) = 579.3$  psi  
 $\frac{W_{SELF}}{W} = D \frac{AREA}{144} = 30^{PCF} \frac{270 m^2}{144} = 56.25$  PLF  
 $M_W = \frac{W L^2}{8} = \frac{56.25(19)^2}{8} = \frac{2533}{144}$  FT-LB  
 $M_{TOTAL} = M_P + M_W = \frac{53428}{579.3} = 55969$  FT-LB  
 $\frac{5'RER}{5} = \frac{M_F}{F} = \frac{55969(12)}{579.3} = 1159.4$  m<sup>3</sup>

1159.4 > 1058 so 12 x 24 is too small

Arch 544

Trial 2: Sx req'd =  $1159 \text{ in}^3$ 

|                |                     |                  | X->              | AXIS            | Y-۱              | AXIS         |                                                                                     |                                               |           |            |            |           |  |  |
|----------------|---------------------|------------------|------------------|-----------------|------------------|--------------|-------------------------------------------------------------------------------------|-----------------------------------------------|-----------|------------|------------|-----------|--|--|
| Nominal        | Standard<br>Dressed | Area<br>of       | Section          | Moment<br>of    | Section          | Moment<br>of | t Approximate weight in pounds per linear foot of piece when density of wood equals |                                               |           |            |            |           |  |  |
| Size           | Size (S4S)          | Section          | Modulus          | Inertia         | Modulus          | Inertia      |                                                                                     | 25 lbs/ft <sup>3</sup> 30 lbs/ft <sup>3</sup> |           |            |            |           |  |  |
| bxd            | bxd                 | A                | S <sub>xx</sub>  | I <sub>xx</sub> | Ś <sub>yy</sub>  | lyy          | 25 lbs/ft°                                                                          | 30 lbs/ft°                                    | 35 lbs/ft | 40 lbs/ft° | 45 lbs/ft° | 50 lbs/ft |  |  |
|                | in. x in.           | in. <sup>2</sup> | in. <sup>3</sup> | in.4            | in. <sup>3</sup> | in.4         |                                                                                     |                                               |           |            |            |           |  |  |
| Beams &        | Stringers (see N    |                  |                  | 4.1.5.3)        |                  |              |                                                                                     |                                               |           |            |            |           |  |  |
| 10 x 14        | 9-1/2 x 13-1/2      | 128.3            | 288.6            | 1948            | 203.1            | 964.5        | 22.27                                                                               | 26.72                                         | 31.17     | 35.63      | 40.08      | 44.53     |  |  |
| 10 x 16        | 9-1/2 x 15-1/2      | 147.3            | 380.4            | 2948            | 233.1            | 1107         | 25.56                                                                               | 30.68                                         | 35.79     | 40.90      | 46.02      | 51.13     |  |  |
| 10 x 18        | 9-1/2 x 17-1/2      | 166.3            | 484.9            | 4243            | 263.2            | 1250         | 28.86                                                                               | 34.64                                         | 40.41     | 46.18      | 51.95      | 57.73     |  |  |
| 10 x 20        | 9-1/2 x 19-1/2      | 185.3            | 602.1            | 5870            | 293.3            | 1393         | 32.16                                                                               | 38.59                                         | 45.03     | 51.46      | 57.89      | 64.32     |  |  |
| 10 x 22        | 9-1/2 x 21-1/2      | 204.3            | 731.9            | 7868            | 323.4            | 1536         | 35.46                                                                               | 42.55                                         | 49.64     | 56.74      | 63.83      | 70.92     |  |  |
| 10 x 24        | 9-1/2 x 23-1/2      | 223.3            | 874.4            | 10274           | 353.5            | 1679         | 38.76                                                                               | 46.51                                         | 54.26     | 62.01      | 69.77      | 77.52     |  |  |
| 12 x 16        | 11-1/2 x 15-1/2     | 178.3            | 460.5            | 3569            | 341.6            | 1964         | 30.95                                                                               | 37.14                                         | 43.32     | 49.51      | 55.70      | 61.89     |  |  |
| 12 x 18        | 11-1/2 x 17-1/2     | 201.3            | 587.0            | 5136            | 385.7            | 2218         | 34.94                                                                               | 41.93                                         | 48.91     | 55.90      | 62.89      | 69.88     |  |  |
| 12 x 20        | 11-1/2 x 19-1/2     | 224.3            | 728.8            | 7106            | 429.8            | 2471         | 38.93                                                                               | 46.72                                         | 54.51     | 62.29      | 70.08      | 77.86     |  |  |
| 12 x 22        | 11-1/2 x 21-1/2     | 247.3            | 110.688          | <b>5?</b> 9524  | 473.9            | 2725         | 42.93                                                                               | 51.51                                         | 60.10     | 68.68      | 77.27      | 85.85     |  |  |
| 12 x 24        | 11-1/2 x 23-1/2     | 270.3            | 1058             | 12437           | 518.0            | 2978         | 46.92                                                                               | 56.30                                         | 65.69     | 75.07      | 84.45      | 93.84     |  |  |
| 14 x 18        | 13-1/2 x 17-1/2     | 236.3            | 689.1            | 6029            | 531.6            | 3588         | 41.02                                                                               | 49.22                                         | 57.42     | 65.63      | 73.83      | 82.03     |  |  |
| <u>14</u> x 20 | 13-1/2 x 19-1/2     | 263.3            | 855.6            | 8342            | 592.3            | 3998         | 45.70                                                                               | 54.84                                         | 63.98     | 73.13      | 82.27      | 91.41     |  |  |
| 14 x 22        | 13-1/2 x 21-1/2     | 290.3            | 1040             | 11181           | 653.1            | 4408         | 50.39                                                                               | 60.47                                         | 70.55     | 80.63      | 90.70      | 100.8     |  |  |
| - 14 x 24      | 13-1/2 x 23-1/2     | 317.3            | 1243             | 14600           | 713.8            | 4818         | 55.08                                                                               | 66.09                                         | 77.11     | 88.13      | 99.14      | 110.2     |  |  |
| 16 x 20        | 15-1/2 x 19-1/2     | 302.3            | 982.3            | 9578            | 780.8            | 6051         | 52.47                                                                               | 62.97                                         | 73.46     | 83.96      | 94.45      | 104.9     |  |  |
| 16 x 22        | 15-1/2 x 21-1/2     | 333.3            | 1194             | 12837           | 860.9            | 6672         | 57.86                                                                               | 69.43                                         | 81.00     | 92.57      | 104.1      | 115.7     |  |  |
| 16 x 24        | 15-1/2 x 23-1/2     | 364.3            | 1427             | 16763           | 941.0            | 7293         | 63.24                                                                               | 75.89                                         | 88.53     | 101.2      | 113.8      | 126.5     |  |  |

## try 14 x 24 Sx = 1243 in<sup>3</sup>

University of Michigan, TCAUP

```
Arch 544
```

Slide 85 of 88

# Timber Beam Design

Trial 2:  $14 \times 24$  ( $13 \frac{1}{2} \times 23 \frac{1}{2}$ ) Sx = 1243 in<sup>3</sup>

revise adjustment factors:

# Timber Beam Design

Trial 2:  $14 \times 24$  Ix = 14600 in<sup>4</sup>

check deflection: assume <u>30% of LL</u> is sustained

see NDS 3.5 Kcr = 1.5 "seasoned lumber"

TABLE 1604.3 DEFLECTION LIMITS<sup>a, b, c, h, i</sup>

| CONSTRUCTION                                                                                                                  | L                       | S or W <sup>f</sup>     | $D + L^{d,g}$           |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Roof members: <sup>e</sup><br>Supporting plaster or stucco ceiling<br>Supporting nonplaster ceiling<br>Not supporting ceiling | //360<br>//240<br>//180 | //360<br>//240<br>//180 | //240<br>//180<br>//120 |
| Floor members                                                                                                                 | //360                   | -                       | //240                   |
| Exterior walls:<br>With plaster or stucco finishes<br>With other brittle finishes<br>With flexible finishes                   |                         | //360<br>//240<br>//120 |                         |
| Interior partitions: <sup>b</sup><br>With plaster or stucco finishes<br>With other brittle finishes<br>With flexible finishes | //360<br>//240<br>//120 | 111                     | 111                     |
| Farm buildings                                                                                                                | -                       | -                       | //180                   |
| Greenhouses                                                                                                                   | -                       | -                       | //120                   |

L/240 = 19(12)/240 = 0.95"

DEFLECTION

$$Long - TERM : W_{V} P_{b} 30\% P_{L}$$

$$\Delta_{W_{0}} = \frac{5W_{0} l^{4}}{384 EI} = \frac{5(66.1)(19)^{4}(1728)}{384(1200000)(14600)} = 0.011''$$

$$\Delta_{P_{0}} = \frac{P_{b} l^{3}}{46 EI} = \frac{2888(19)^{3}(1728)}{48(1200000)(14600)} = 0.0407''$$

$$\Delta_{P_{1}} = \frac{0.3(l_{L})l^{3}}{48 EI} = \frac{0.3(8360)(19)^{5}(1728)}{48(1200000)(14600)} = \frac{0.035''}{48(1200000)(14600)} + \frac{0.035''}{0.0847''}$$
SHORT-TERM : 70% P<sub>L</sub>

$$\Delta_{LT} = \frac{0.7(R_{L})l^{3}}{48 EI} = \frac{0.7(360)(19)^{3}(1728)}{48((1200000)(14600))} = 0.0825''$$
TOTAL DEFLECTION :
$$\Delta_{T} = K_{cr} \Delta_{Lr} + \Delta_{sr}$$

$$= 1.5(0.0867) + 0.0825 = 0.213''$$

University of Michigan, TCAUP