Architecture 544 Wood Structures

Engineered Wood Products: LVL PSL LSL

- Properties
- NDS criteria
- Literature & Design Aids
- Applications

University of Michigan, TCAUP

Slide 1 of 27

APA - E30

Engineered Wood

Sun Joist Microllame LVL

NDS – Chap. 8

8.1.2 Definitions

- LVL 8.1.2.1 The term "laminated veneer lumber" refers to a composite of wood veneer sheet elements with wood fiber primarily oriented along the length of the member. Veneer thickness shall not exceed 0.25".
- PSL8.1.2.2 The term "parallel strand lumber" refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.25" and the average length shall be a minimum of 150 times the least dimension.
- LSL 8.1.2.3 The term "laminated strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.10" and the average length shall be a minimum of 150 times the least dimension.
- OSL8.1.2.4 The term "oriented strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.10" and the average length shall be a minimum of 75 times the least dimension.

8.1.2.5 The term "structural composite lumber" refers to either laminated veneer lumber, parallel strand lumber, laminated strand lumber, or oriented strand lumber. These materials are structural members bonded with an exterior adhesive.

University of Michigan, TCAUP

STRUCTURAL COMPOSITE LUMBER 8.1 General 52 8.2 Reference Design Values 52 Adjustment of Reference Design Values 8.3 8 52 Special Design Considerations 8.4 54 Table 8.3.1 Applicability of Adjustment Factors for Structural Composite Lumber...... Wood Slide 3 of 27

NDS - Chap. 8

Table 8.3.1		Appli Comp	cabili oosite	ty of Lum	Adjus ber	tment	t Fact	ors fo	or Stri	ictura	I	
		ASD only			ASD	and L	RFD				LRFD only)
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Volume Factor	Repetitive Member Factor	Column Stability Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	CD	См	Ct	C _L ¹	C _V ¹	Cr	-	-	K _F 2.54	ф 0.85	λ
$F_t = F_t$	x	CD	См	Ct	-	Cv	-	-	-	2.70	0.80	λ
$F_v = F_v$	x	CD	См	Ct	-	-	-	-	-	2.88	0.75	λ
$F_c' = F_c$	x	CD	См	Ct	-	-	-	Ср	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	х	-	См	Ct	-	-	-	-	Сь	1.67	0.90	-
E' = E	х	-	См	Ct	-	-	-	-	-	-	-	-
$E_{min} = E_{min}$	x	-	C _M	Ct	-	-	-	-	-	1.76	0.85	-

the reference bending design value, Fb

8.3.2 Load Duration Factor, C_D (ASD Only)

All reference design values except modulus of elasticity, E, modulus of elasticity for beam and column stability, Emin, and compression perpendicular to grain, FcL, shall be multiplied by load duration factors, CD, as specified in 2.3.2.

8.3.3 Wet Service Factor, C_M

Reference design values for structural composite lumber are applicable to dry service conditions as specified in 8.1.4 where $C_M = 1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture shall be in accordance with information provided by the structural composite lumber manufacturer.

8.3.4 Temperature Factor, Ct

When structural members will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C), reference design values shall be multiplied by the temperature factors, Ct, specified in 2.3.3.

8.3.5 Beam Stability Factor, CL

Structural composite lumber bending members shall be laterally supported in accordance with 3.3.3.

8.3.6 Volume Factor, Cv

8.3.6.1 Reference bending design values, F_b, for structural composite lumber shall be multiplied by the volume factor, C_v, which shall be obtained from the structural composite lumber manufacturer's literature

Structural Composite Lumber

Parallel Strand Lumber - PSL

University of Michigan, TCAUP

Wood

Slide 11 of 27

Structural Composite Lumber

For deeper depth Parallam® PSL beams, see the Trus Joist® 2.2E Parallam® PSL Deep Beam guide, TJ-7001, or contact your Weyerhaeuser representative.

TJ_9000

Weyerhaeuser - Trus Joist - LSL - LVL - PSL

DESIGN PROPERTIES

Allowable Design Properties(1) (100% Load Duration)

								Dept	h					
Grade Width		Design Property	43⁄8"	51⁄2"	5½" Plank Orientation	71⁄4"	91⁄4"	9½"	11¼"	111/8"	14"	16"	18"	20
					Timber	Strand®	LSL							
		Moment (ft-lbs)	1,735	2,685	1,780	4,550								
1.05	E 3½"	Shear (lbs)	4,340	5,455	1,925	7,190								
1.3E		Moment of Inertia (in.4)	24	49	20	111								
		Weight (plf)	4.5	5.6	5.6	7.4								
		Moment (ft-lbs)						5,210		7,975	10,920	14,090		
	10/8	Shear (lbs)						3,435		4,295	5,065	5,785		
	1-3/4	Moment of Inertia (in.4)						125		244	400	597		
		Weight (plf)						5.2		6.5	7.7	8.8		
.33E	31/2"	Moment (ft-lbs)						10,420		15,955	21,840	28,180		
		Shear (lbs)						6,870		8,590	10,125	11,575		
		Moment of Inertia (in.4)						250		488	800	1,195		
	Weight (plf)						10.4		13	15.3	17.5			
					Micr	ollam® LV	L							
	Moment (ft-lbs)		2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23	
2.05	13/8	Shear (lbs)		1,830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6
2.02	1%4	Moment of Inertia (in.4)		24		56	115	125	208	244	400	597	851	1
		Weight (plf)		2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	
					Para	llam® PS	1							
		Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665	
	914"	Shear (lbs)	1				6,260	6,430	7,615	8,035	9,475	10,825	12,180	
	31/2	Moment of Inertia (in.4)	1				231	250	415	488	800	1,195	1,701	
		Weight (plf)	1				10.1	10.4	12.3	13.0	15.3	17.5	19.7	
		Moment (ft-lbs)	1				18,625	19,585	26,955	29,855	40,740	52,430	65,495	
0.05	E1/4	Shear (lbs)	1				9,390	9,645	11,420	12,055	14,210	16,240	18,270	
2.0E 5¼"	Moment of Inertia (in.4)					346	375	623	733	1,201	1,792	2,552		
	Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5		
		Moment (ft-lbs)					24,830	26,115	35,940	39,805	54,325	69,905	87,325	
	7.0	Shear (lbs)					12,520	12,855	15,225	16,070	18,945	21,655	24,360	
	1.	Moment of Inertia (in.4)					462	500	831	977	1,601	2,389	3,402	
		Weight (nlf)					20.2	20.8	24.6	26.0	30.6	35.0	39.4	

University of Michigan, TCAUP

Wood

Slide 15 of 27

Weyerhaeuser - Trus Joist - LSL - LVL - PSL

DESIGN PROPERTIES

Design Stresses⁽¹⁾ (100% Load Duration)

Grade	Orientation	G Shear Modulus of Elasticity (psi)	E Modulus of Elasticity (psi)	E _{min} Adjusted Modulus of Elasticity ⁽²⁾ (psi)	Fb Flexural Stress ⁽³⁾ (psi)	F _t Tension Stress ⁽⁴⁾ (psi)	F _{c⊥} Compression Perpendicular to Grain ⁽⁵⁾ (psi)	F _{cll} Compression Parallel to Grain (psi)	F _v Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ⁽⁶⁾
					mberStrand® LS					
1.25	Beam/Column	81,250	1.3 x 10 ⁶	660,750	1,700	1,075	710	1,835	425	0.50(7)
1.3E	Plank	81,250	1.3 x 10 ⁶	660,750	1,900(8)	1,075	635(9)	1,835	150	0.50(7)
1.55E	Beam	96,875	1.55 x 10 ⁶	787,815	2,325	1,070(10)	900	2,170	310(10)	0.50(7)
Microllam® LVL										
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,600	1,555	750	2,510	285	0.50
					Parallam® PSL					
1.8E	Column	112,500	1.8 x 10 ⁶	914,880	2,400(11)	1,755	545(11)	2,500	190(11)	0.50
2 NF	Ream	125 000	2 0 x 106	1 016 535	2 900	2 0 2 5	625(12)	2 900(13)	290	0.50

Unless otherwise noted, adjustment to the design stresses for duration of load are permitted in accordance with the applicable code.

(2) Reference modulus of elasticity for beam and column stability calculations, per NDS®.

(3) For 12" depth. For other depths, multiply F_b by the appropriate factor as follows:

- For TimberStrand® LSL, multiply by $\begin{bmatrix} 12\\ -\end{bmatrix}^{0.16}$ - For Microllam® LVL, multiply by $\begin{bmatrix} 12\\ -\end{bmatrix}^{0.16}$

- For Parallam® PSL, multiply by $\begin{bmatrix} 12\\ d \end{bmatrix}^{0.111}$ (4) Ft has been adjusted to reflect the volume effects for most standard applications.

(5) $F_{c\perp}$ may not be increased for duration of load.

TJ_9000.pdf

(6) For lateral connection design only.(7) Specific gravity of 0.58 may be used for bolts installed perpendicular to face and loaded perpendicular to grain.

(8) Values are for thickness up to 31/2".

(9) For members less than 134" thick and in plank orientation, use $F_{c\perp}$ of 670 psi.

(10) Value accounts for large hole capabilities. See Allowable Holes on page 26.

(11) Value shown is for plank orientation.
(12) Use 750 psi for Parallam® PSL identified with plant number 0579.

(13) For column applications, use F_{cll} of 500 psi. Alternatively, refer to ESR-1387, Table 1, footnote 15.

Weyerhaeuser - Trus Joist - LSL - LVL - PSL

TJ_9000.pdf

* Indicates Total Load value controls TJ 9000.pdf

University of Michigan, TCAUP

Slide 18 of 27

LVL – PSL – LSL Selection

- 1. Calculate total beam load
- 2. Choose beam span in chart
- 3. Find section to carry load

or

- 2. Calculate shear and moment
- 3. Use properties chart to find section
- 4. Include adjustment factors: C_D, C_V

University of Michigan, TCAUP

Wood

Slide 19 of 27

LVL Example – Beam 4

Given: span = 24 ft. D 6 psf Lr 20 psf

- 1. Calculate total beam load
- 2. Choose beam span in chart
- 3. Find section to carry load

LOAD IN PLF D+Lr = 6 + 20 = 26 PSF

LVL

Example – Beam 4

- Given: span = 24 ft. D 6 psf Lr 20 psf 130 plf (total load) M = 9360 ft-lbs V = 1560 lbs
- 3. Use properties chart to find section

$$H_{MAX} = \frac{\omega l^2}{8} = \frac{130(24)^2}{8} = 9360^{-14}$$

$$V_{MAX} = \frac{\omega l}{2} = \frac{130(24)}{2} = 1560^{-44}$$

TRY LVL 2.0E
$$1\frac{3}{4}$$
" × $11\frac{4}{4}$ "
 $S_{x} = \frac{b}{c}d^{2}z = \frac{1.75''(11.25)^{2}}{6} = 36.91 \text{ m}^{3}$
 $f_{b} = \frac{M}{S_{x}} = \frac{9360(12)}{36.91} = 3042 \text{ ps}$
 $A = 1.75(11.25) = 19.68 \text{ m}^{2}$
 $f_{y} = \frac{3}{2}\frac{V}{A} = 1.5\frac{1560}{19.68} = 118.8 \text{ ps}$

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

DESIGN PROPERTIES

	Orientation	Shear Modulus of Elasticity (psi)	E Modulus of Elasticity (psi)	Adjusted Modulus of Elasticity ⁽²⁾ (psi)	Fb Flexural Stress ⁽³⁾ (psi)	F _t Tension Stress ⁽⁴⁾ (psi)	F _{c⊥} Compression Perpendicular to Grain ⁽⁵⁾ (psi)	Compression Parallel to Grain (psi)	Fy Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ⁽⁶⁾
1.05	Beam/Column	81,250	1.3 x 10 ⁶	Ti 660,750	mberStrand®LS 1,700	1,075	710	1,835	425	0.50(7)
1.5E	Plank Beam	81,250 96,875	1.3 x 10 ⁶ 1.55 x 10 ⁶	660,750 787,815	1,900 ⁽⁸⁾	1,075 1,070 ⁽¹⁰⁾	635 ⁽⁹⁾ 900	1,835	150 310 ⁽¹⁰⁾	0.50(7)
2.05	Deem	125,000	2.0 × 106	1.010.525	Microllam® LVL	1,676	750	2,510	205	0.50
2.0E	Beam	125,000	2.0 X 10°	1,016,535	Parallam [®] PSL	1,555	750	2,510	280	0.50
1.8E 2.0E	Column Beam	112,500 125,000	1.8 x 10 ⁶ 2.0 x 10 ⁶	914,880 1,016,535	2,400(11) 2,900	1,755 2,025	545 ⁽¹¹⁾ 625 ⁽¹²⁾	2,500 2,900 ⁽¹³⁾	190 ⁽¹¹⁾ 290	0.50
 (2) Reference milling (3) For 12" depting For Timber: For Microlling For Paralla (4) F_t has been a (5) F_{c⊥} may not b 	odulus of elasticity h. For other depths, Strand® LSL, multip am® LVL, multiply b adjusted to reflect th be increased for dur cabulated val	for beam and colu multiply F_b by the ly by $\left[\frac{12}{d}\right]^{0.052}$ y $\left[\frac{12}{d}\right]^{0.136}$ y $\left[\frac{12}{d}\right]^{0.136}$ y $\left[\frac{12}{d}\right]^{0.111}$ he volume effects ration of load. ues by adju	mn stability calcu appropriate facto for most standard istment fact	lations, per NDS®. r as follows: applications.	(8) V (9) F (10) V (11) V (12) U (13) F f C _E C _t (C ₁ O	erpendicular to g alues are for thicl or members less i alue acounts for alue shown is for alue shown is for Pa or column applica botnote 15.	ain. kness up to 3½". han 1¾" thick and large hole capabili plank orientation. rallam® PSL identif tions, use F _{ell} of 50	in plank orientati ties. See Allowabi ied with plant nui O psi. Alternativel	ion, use F _{e⊥} of 670 l e Holes on page 26 mber 0579. ly, refer to ESR-138	psi. 5. 7, Table 1,
					Wood				Slide 25 of 2	_
Univers	ity of Michigan, "	rcaup 								27
Univers LVL Example Given:	e – Bean span = D 6 psf 130 plf	n 4 24 ft. Lr 20	psf			Fo doju Co = Cr = Cr	STMENT 1.25 [12] 0.13 [2] 0.13 (PER ND BRACED , Ct , C	$G = \left(\frac{12}{14} + \frac{12}{14} $)) , , , , , , , , , , , , , , , , , ,	0.979 2= 1.0
Univers -VL Example Given: Fry:	e – Bean span = D 6 psf 130 plf	n 4 24 ft. Lr 20 11.25"	psf			Fo Δοιυ Co = Cv = Cu Cn	STMENT 1.25 [2] (PER ND BRACED , C ₄ , 0	$G = \left(\frac{12}{14} + \frac{12}{14} $)) 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.979 2=1.0

LVL

Given: span = 24 ft. Lr 20 psf 100 plf

5. Check deflection for Lr < L/240

Table 1604.3 DEFLECTION LIMITS ^a, ^b, ^c, ^h, ⁱ

CONSTRUCTION	L or Lr	S or W ^f	$D + L^{d, g}$
Roof members: ^e			
Supporting plaster or stucco ceiling	//360	//360	//240
Supporting nonplaster ceiling	//240	//240	//180
Not supporting ceiling	//180	//180	//120
Floor members	//360	-	//240
Exterior walls:			
With plaster or stucco finishes	-	//360	-
With other brittle finishes	-	//240	-
With flexible finishes	-	//120	-
Interior partitions:b			
With plaster or stucco finishes	//360		-
With other brittle finishes	//240	-	-
With flexible finishes	//120		-
Farm buildings	-	×	//180
Greenhouses	-		//120

1.75" x 11.25"

$$I = \frac{bal^{3}}{12} = 20\% \text{ in}^{4}$$

$$\Delta = \frac{5 \text{ win} \ell^{4}}{384 \text{ El}} = \frac{5(100)(24)^{4}(1728)}{384(2.0 \times 10^{6})208}$$

$$= 1.8"$$

$$\frac{L}{240} = \frac{24(12)}{240} = 1.2" < 1.8" \quad \therefore \text{ FAILS}$$
1.75" x 14"

$$I = \frac{bal^{3}}{12} = \frac{1.75(14)^{3}}{12} = 400 \text{ in}^{4}$$

$$\Delta = \frac{5 \text{ win} \ell^{4}}{384 \text{ EI}} = \frac{5(100)(24)^{4}(1728)}{384(2000000)(400)} = 0.93 \text{ in}$$

$$\frac{L}{240} = \frac{24(12)}{240} = 1.20 \times 0.93 \text{ in} \text{ or } \mathbb{ or$$

University of Michigan, TCAUP

Wood

Slide 27 of 27