Architecture 544 Wood Structures

Engineered Wood Products: LVL PSL LSL

- Properties
- NDS criteria
- Literature & Design Aids
- Applications

Wood

Sun Joiat Microllam LVL

Slide 1 of 27

APA – E30

Engineered Wood

NDS – Chap. 8

8.1.2 Definitions

- LVL 8.1.2.1 The term "laminated veneer lumber" refers to a composite of wood veneer sheet elements with wood fiber primarily oriented along the length of the member. Veneer thickness shall not exceed 0.25".
- PSL8.1.2.2 The term "parallel strand lumber" refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.25" and the average length shall be a minimum of 150 times the least dimension.
- LSL 8.1.2.3 The term "laminated strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.10" and the average length shall be a minimum of 150 times the least dimension.
- OSL8.1.2.4 The term "oriented strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.10" and the average length shall be a minimum of 75 times the least dimension.

8.1.2.5 The term "structural composite lumber" refers to either laminated veneer lumber, parallel strand lumber, laminated strand lumber, or oriented strand lumber. These materials are structural members bonded with an exterior adhesive.

University of Michigan, TCAUP

STRUCTURAL COMPOSITE LUMBER 8.1 General 52 8.2 Reference Design Values 52 Adjustment of Reference Design Values 8.3 8 52 Special Design Considerations 8.4 54 Table 8.3.1 Applicability of Adjustment Factors for Structural Composite Lumber...... Wood Slide 3 of 27

NDS - Chap. 8

Table 8.3.1		Appli Comp				tment	Fact	ors fo	or Stru	ictural	I	
		ASD only	ASD and LRFD									
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Volume Factor	Repetitive Member Factor	Column Stability Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
			_		I		Re	C		K _F	φ	
$\mathbf{F}_{\mathbf{b}} = \mathbf{F}_{\mathbf{b}}$	х	CD	CM	C_t	$\underline{C_L}^1$	$\underline{C_V}^1$	Cr	-	-	2.54	0.85	λ
$F_t = F_t$	х	CD	C _M	Ct	-	Cv	-	-	-	2.70	0.80	λ
$\mathbf{F_v}' = \mathbf{F_v}$	х	CD	См	Ct	-	-	-	-	-	2.88	0.75	λ
$F_c = F_c$	x	CD	См	Ct	-	-	-	Ср	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	х	-	См	Ct	-	-	-	-	Сь	1.67	0.90	-
E' = E	х	-	См	Ct	-	-	-	-	-	-	-	-
$E_{min}' = E_{min}$	x	-	C _M	Ct	-	-	-	-	-	1.76	0.85	-

the reference bending design value, Fb

8.3.2 Load Duration Factor, C_D (ASD Only)

All reference design values except modulus of elasticity, E, modulus of elasticity for beam and column stability, Emin, and compression perpendicular to grain, FcL, shall be multiplied by load duration factors, CD, as specified in 2.3.2.

8.3.3 Wet Service Factor, C_M

Reference design values for structural composite lumber are applicable to dry service conditions as specified in 8.1.4 where $C_M = 1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture shall be in accordance with information provided by the structural composite lumber manufacturer.

8.3.4 Temperature Factor, Ct

When structural members will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C), reference design values shall be multiplied by the temperature factors, Ct, specified in 2.3.3.

8.3.5 Beam Stability Factor, CL

Structural composite lumber bending members shall be laterally supported in accordance with 3.3.3.

8.3.6 Volume Factor, Cv

8.3.6.1 Reference bending design values, F_b, for structural composite lumber shall be multiplied by the volume factor, C_v, which shall be obtained from the structural composite lumber manufacturer's literature

Parallel Strand Lumber - PSL

University of Michigan, TCAUP

Wood

Slide 11 of 27

Laminated Strand Lumber - LSL Oriented Strand Lumber (LSL): Flaked strand length-to-thickness ratio is around 150 Common uses: studs Oriented Strand Lumber (OSL): Flaked strand length-to-thickness ratio is around 75 Common uses: studs

Structural Composite Lumber

For deeper depth Parallam® PSL beams, see the Trus Joist® 2.2E Parallam® PSL Deep Beam guide, 1J-7001, or contact your Weyerhaeuser representative.

TJ 9000

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

TJ_9000.pdf

		esign Properties ⁽¹⁾	Depth												
Grade	Width	Design Property	4 ³ /8"	51⁄2"	5½" Plank Orientation	71⁄4"	91⁄4"	91⁄2"	111/4"	117/8"	14"	16"	18"		
					Timber	Strand®	LSL								
		Moment (ft-lbs)	1.735	2.685	1.780	4.550									
		Shear (lbs)	4,340	5,455	1,925	7,190									
1.3E	31/2"	Moment of Inertia (in.4)	24	49	20	111									
		Weight (plf)	4.5	5.6	5.6	7.4									
		Moment (ft-lbs)						5,210		7,975	10,920	14,090			
	10/8	Shear (lbs)						3,435		4,295	5,065	5,785			
	13/4"	Moment of Inertia (in.4)						125		244	400	597			
		Weight (plf)						5.2		6.5	7.7	8.8			
1.55E		Moment (ft-lbs)						10,420		15,955	21,840	28,180			
		Shear (lbs)						6,870		8,590	10,125	11,575			
	31/2"	Moment of Inertia (in.4)						250		488	800	1,195			
		Weight (plf)						10.4		13	15.3	17.5			
					Micr	ollam® LV	L								
		<u>Momen</u> t (ft-lbs)		2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	2	
2.0E	13.6"	Shear (lbs)		1,830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6	
2.02	13/4"	Moment of Inertia (in.4)		24		56	115	125	208	244	400	597	851	1	
		Weight (plf)		2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2		
					Para	illam® PS									
		Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665		
	31/2"	Shear (lbs)					6,260	6,430	7,615	8,035	9,475	10,825	12,180		
	572	Moment of Inertia (in.4)					231	250	415	488	800	1,195	1,701		
		Weight (plf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7		
		Moment (ft-lbs)					18,625	19,585	26,955	29,855	40,740	52,430	65,495		
2.0E	51/4"	Shear (lbs)					9,390	9,645	11,420	12,055	14,210	16,240	18,270		
2.02		Moment of Inertia (in.4)					346	375	623	733	1,201	1,792	2,552		
		Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5		
		Moment (ft-lbs)		-			24,830	26,115	35,940	39,805	54,325	69,905	87,325		
	7"	Shear (lbs)					12,520	12,855	15,225	16,070	18,945	21,655	24,360		
	l ' [Moment of Inertia (in.4)					462	500	831	977	1,601	2,389	3,402		
		Weight (plf)					20.2	20.8	24.6	26.0	30.6	35.0	39.4		

DESIGN PROPERTIES

Weyerhaeuser - Trus Joist - LSL - LVL - PSL

DESIGN PROPERTIES

Design St	resses ⁽¹⁾ (⊂ ₀ =1. <i>0</i> 100% Load	Duration)							
Grade	Orientation	G Shear Modulus of Elasticity (psi)	E Modulus of Elasticity (psi)	E _{min} Adjusted Modulus of Elasticity ⁽²⁾ (psi)	Fb Flexural Stress ⁽³⁾ (psi)	F _t Tension Stress ⁽⁴⁾ (psi)	F _{c⊥} Compression Perpendicular to Grain ⁽⁵⁾ (psi)	F _{cll} Compression Parallel to Grain (psi)	F _v Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ⁽⁶⁾
				Ti	mberStrand® LS	SL .				
1.3E	Beam/Column	81,250	1.3 x 10 ⁶	660,750	1,700	1,075	710	1,835	425	0.50(7)
1.3E	Plank	81,250	1.3 x 10 ⁶	660,750	1,900(8)	1,075	635 ⁽⁹⁾	1,835	150	0.50(7)
1.55E	Beam	96,875	1.55 x 10 ⁶	787,815	2,325	1,070(10)	900	2,170	310(10)	0.50(7)
					Microllam® LVL					
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,600	1,555	750	2,510	285	0.50
					Parallam® PSL					
1.8E	Column	112,500	1.8 x 10 ⁶	914,880	2,400(11)	1,755	545(11)	2,500	190(11)	0.50
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,900	2,025	625(12)	2,900(13)	290	0.50

(1) Unless otherwise noted, adjustment to the design stresses for duration of load are permitted in accordance with the applicable code.

CF

(2) Reference modulus of elasticity for beam and column stability calculations, per NDS $^{\otimes}$.

(3) For 12" depth. For other depths, multiply F_b by the appropriate factor as follows:

- For TimberStrand® LSL, multiply by $\left[\frac{12}{d}\right]^{0.16}$ - For Microllam® LVL, multiply by $\left[\frac{12}{d}\right]^{0.136}$

- For Parallam® PSL, multiply by $\begin{bmatrix} 12\\ d \end{bmatrix}^{0.111}$

(4) F_i has been adjusted to reflect the volume effects for most standard applications. (5) $\overline{F_{c\perp}}$ may not be increased for duration of load.

TJ_9000.pdf

(6) For lateral connection design only.(7) Specific gravity of 0.58 may be used for bolts installed perpendicular to face and loaded perpendicular to grain.

(8) Values are for thickness up to 31/2".

(9) For members less than 134" thick and in plank orientation, use $F_{c\perp}$ of 670 psi.

(10) Value accounts for large hole capabilities. See Allowable Holes on page 26.

(11) Value shown is for plank orientation.
(12) Use 750 psi for Parallam® PSL identified with plant number 0579.

(13) For column applications, use F_{cll} of 500 psi. Alternatively, refer to ESR-1387, Table 1, footnote 15.

Weyerhaeuser - Trus Joist - LSL - LVL - PSL

TJ_9000.pdf

* Indicates Total Load value controls TJ 9000.pdf

University of Michigan, TCAUP

Slide 18 of 27

LVL – PSL – LSL Selection

- 1. Calculate total beam load
- 2. Choose beam span in chart
- 3. Find section to carry load
- or

PROPERTIES

- 2. Calculate shear and moment
- 3. Use properties chart to find section
- 4. Include adjustment factors: C_D, C_V

University of Michigan, TCAUP

Wood

Slide 19 of 27

LVL Example – Beam 4

Given: span = 24 ft. D 6 psf Lr 20 psf

- 1. Calculate total beam load
- 2. Choose beam span in chart
- 3. Find section to carry load

LOAD IN PLF $P + L_r = 6 + 20 = 26 PSF$ 26 (5') = 130 PLF

LVL

Example – Beam 4

- Given: span = 24 ft. D 6 psf Lr 20 psf 130 plf (total load) M = 9360 ft-lbs V = 1560 lbs
- 3. Use properties chart to find section

$$H_{MAX} = \frac{\omega l^2}{8} = \frac{130(24)^2}{8} = \frac{9360}{100}^{1-10}$$

$$V_{MAX} = \frac{\omega l}{2} = \frac{130(24)}{2} = 1560^{-10}$$

TRY LVL 2.0E
$$\frac{134'' \times 11'4''}{5x} = \frac{1000}{6} = \frac{1.75''(11.25)^2}{6} = 36.91 \text{ m}^3$$

 $\frac{1}{5} = \frac{1000}{5x} = \frac{9360(12)}{36.91} = 3042 \text{ ps}$
 $A = 1.75(11.25) = 19.68 \text{ m}^2$
 $f_V = \frac{3}{2} \frac{V}{A} = 1.5 \frac{1560}{19.68} = \frac{118.8}{19.68} \text{ ps}$

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

DESIGN PROPERTIES

Grade	Orientation	G Shear Modulus of Elasticity (psi)	E Modulus of Elasticity (psi)	E _{min} Adjusted Modulus of Elasticity ⁽²⁾ (psi)	(h21)	F _t Tension Stress ⁽⁴⁾ (psi)	F _{c⊥} Compression Perpendicular to Grain ⁽⁵⁾ (psi)	F _{cll} Compression Parallel to Grain (psi)	<u>F.</u> Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ⁽⁶⁾
1.3E	Beam/Column	81,250	1.3 x 10 ⁶	660,750	imberStrand®LS	1,075	710	1,835	425	0.50(7)
1.55E	Plank Beam	81,250 96,875	1.3 x 10 ⁶ 1.55 x 10 ⁶	660,750 787,815	1,900 ⁽⁸⁾ 2,325	1,075 1,070 ⁽¹⁰⁾	635 ⁽⁹⁾ 900	1,835 2,170	150 310 ⁽¹⁰⁾	0.50 ⁽⁷⁾ 0.50 ⁽⁷⁾
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	Microllam® LVL	1,555	750	2,510	285	0.50
1.8E 2.0E	Column Beam	112,500 125,000	1.8 x 10 ⁶ 2.0 x 10 ⁶	914,880 1,016,535	Parallam® PSL 2,400(11) 2,900	1,755	545 ⁽¹¹⁾ 625 ⁽¹²⁾	2,500 2,900 ⁽¹³⁾	190 ⁽¹¹⁾ 290	0.50 0.50
 For Timbe For Microl For Parall (4) Ft has been (5) Fc⊥ may not 	th. For other depths, rStrand® LSL, multig lam® LVL, multiply b am® PSL, multiply b adjusted to reflect t be increased for du tabulated val	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 12 \\ p \end{array} \\ \hline p \bigg $ \\ \hline p \bigg \\ \hline p \bigg \bigg \bigg \bigg \bigg \\ \hline p \bigg \bigg \bigg \bigg \\ \hline p \bigg \bigg \bigg \bigg \bigg \\ \hline p \bigg \bigg \bigg \bigg \bigg \\ \hline p \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \\ \hline p \bigg	for most standard	applications.	(9) Fr (10) V (11) V (12) U (13) Fr fc	or members less alue accounts for alue shown is for se 750 psi for Pa or column applic: botnote 15.	kness up to 3½". than 1¼" thick and ' large hole capabili plank orientation. rallam® PSL identii ations, use F _{cll} of 50	ties. See Allowab iied with plant nu	le Holes on page 20 mber 0579.	6.
	sity of Michigan, ⁻			1.25	Wood				Slide 25 of 2	27
VI						E ADI	ISTMEN T			
	e – Bean	n 4				F6 Δ010 C0 =	55TMENT = 1.25 = [12] ^{0,15}	6 = (12	0.136	o. 979
Example	e – Bean						$b \text{STMENT} = 1.25^{-1}$ $= \begin{bmatrix} 12 \\ -2 \end{bmatrix}^{0.13}$			o.979
Example	e – Bean span =	24 ft. Lr 20	psf			۲	(PER ND BRACED	5 3.3.3) BY RAFTE) <u>rs</u> :. C	
Example Given:	e – Bean span = D 6 psf	24 ft. Lr 20	psf			۲		5 3.3.3) BY RAFTE) <u>rs</u> :. C	
Example Given:	e – Bean span = D 6 psf 130 plf	24 ft. Lr 20	psf			۲	(PER ND BRACED	5 3.3.3) BY RAFTE) <u>rs</u> :. C	
Example Given:	e – Bean span = D 6 psf	24 ft. Lr 20	psf			Cr Cm	(PER ND BRACED , Ct , Ct	5 3.3.3) By RAFTE Cr = 1) <u>rs</u> :. C	
Example Given:	e – Bean span = D 6 psf 130 plf	24 ft. Lr 20	psf	L	.VL 2.0	С1 См 2Е	(PER ND BRACED , Ct , 344" x	5 3.3.3) By RAFTE Cr = 1) <u>rs</u> :. C	
Given: Try:	e – Bean span = D 6 psf 130 plf	24 ft. Lr 20 11.25"	psf	F	-VL 2.0 Fb = 2 Fb	Cr Cr 600 p 85 ps 600 (3182	(PER ND BRACED , Ct , 344" x	5 3.3.3 $BY RAFTE C_r = 111/4$ " C_{r} D.979 $2 = f_1$) = 312	c= 1.0

LVL

Given: span = 24 ft. Lr 20 psf 100 plf

- 5. Check deflection for Lr < L/240
- IBC Table 1604.3 DEFLECTION LIMITS ^a, ^b, ^c, ^h, ⁱ

CONSTRUCTION	L on Lr)	S or W ^f	$D + L^{d, g}$
Roof members: ^e			
Supporting plaster or stucco ceiling	//360	//360	//240
Supporting nonplaster ceiling	//240	//240	//180
Not supporting ceiling	//180	//180	//120
Floor members	//360	2-2	//240
Exterior walls:			
With plaster or stucco finishes	-	//360	-
With other brittle finishes		//240	
With flexible finishes	-	//120	-
Interior partitions:b			
With plaster or stucco finishes	//360	0.000	-
With other brittle finishes	//240	120	
With flexible finishes	//120		
Farm buildings	-	2-2	#180
Greenhouses	-		//120

1.75" x 11.25" $I = \frac{bel^3}{17} = 208 \text{ m}^4$ $\Delta = \frac{5 \text{ ws} l^{4}}{384 \text{ El}} = \frac{5(100)(24)^{4}(1728)}{384(2.0 \times 10^{6})208}$ = $\frac{1.8}{100}$ [1.5] [244] $\frac{1}{240} = \frac{24(12)}{240} = \frac{1.2}{12} < 1.8$ " : <u>FAILS</u>

1.75" x <u>14</u>" $I = \frac{6d^3}{12} = \frac{1.75(14)^3}{12} = 400 \text{ m}^4$

University of Michigan, TCAUP

Wood

Slide 27 of 27

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

					DE	SIGN	PRO	PER	TIES						
	Allowa	able D	esign Properties(1)	(100%	Load [Duration)									
				Depth											
Moment:	Grade	Width	Design Property	43⁄8"	51⁄2"	5½" Plank Orientation	71⁄4"	91⁄4"	91⁄2"	111/4"	111/8"	14"	16"	18"	20"
9360 ft-lb	Timber Strand® LSL														
			Moment (ft-lbs)	1,735	2,685	1,780	4,550								
	1.3E	31/2"	Shear (lbs)	4,340	5,455	1,925	7,190								
	1.3E	31/2	Moment of Inertia (in.4)	24	49	20	111								
CD=1.25			Weight (plf)	4.5	5.6	5.6	7.4								
			Moment (ft-lbs)						5,210		7,975	10,920	14,090		
		13/4"	Shear (lbs)						3,435		4,295	5,065	5,785		
		1-3/4	Moment of Inertia (in.4)						125		244	400	597		
	1.55E		Weight (plf)						5.2		6.5	7.7	8.8		
	1.552	31/2"	Moment (ft-lbs)						10,420		15,955	21,840	28,180		
			Shear (lbs)						6,870		8,590	10,125	11,575		
Shear:			Moment of Inertia (in.4)						250		488	800	1,195		
			Weight (plf)						10.4		13	15.3	17.5		
560 lbs						Micr	ollam® LV	1							
		13/4"	Moment (ft-lbs)		2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23,58
	2.0E		Shear (lbs)		1,830		2,410	3,075	3,160	3,740	3.950	4,655	5,320	5,985	6,650
	2.02		Moment of Inertia (in.4)		24		56	115	125	208	244	400	597	851	1,167
			Weight (plf)		2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	10.2
				_		Para	allam® PS								
			Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665	
		31/2"	Shear (lbs)					6,260	6,430	7,615	8,035	9,475	10,825	12,180	
			Moment of Inertia (in.4)					231	250	415	488	800	1,195	1,701	
			Weight (plf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7	
			Moment (ft-lbs)					18,625	19,585	26,955	29,855	40,740	52,430	65,495	
	2.0E	51/4"	Shear (lbs)					9,390	9,645	11,420	12,055	14,210	16,240	18,270	
			Moment of Inertia (in.4)					346	375	623	733	1,201	1,792	2,552	
			Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5	
			Moment (ft-lbs)					24,830	26,115	35,940	39,805	54,325	69,905	87,325	
		7"	Shear (lbs)	-				12,520	12,855	15,225	16,070	18,945	21,655	24,360	
			Moment of Inertia (in.4)					462	500	831	977	1,601	2,389	3,402	
			Weight (plf) n orientation, unless otherwise not					20.2	20.8	24.6	26.0	30.6	35.0	39.4	

University of Michigan, TCAUP

Slide 28 of 27