Engineered Wood Products:

LVL
PSL
LSL

- Properties

- NDS criteria
- Literature \& Design Aids
- Applications

APA - E30

NDS - Chap. 8

8.1.2 Definitions

LVL 8.1.2.1 The term "laminated veneer lumber" refers to a composite of wood veneer sheet elements with wood fiber primarily oriented along the length of the member. Veneer thickness shall not exceed 0.25 ".
PSL 8.1.2.2 The term "parallel strand lumber" refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed $0.25^{\prime \prime}$ and the average length shall be a minimum of 150 times the least dimension.
LSL 8.1.2.3 The term "laminated strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed $0.10^{\prime \prime}$ and the average length shall be a minimum of 150 times the least dimension.

OSL8.1.2.4 The term "oriented strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed $0.10^{\prime \prime}$ and the average length shall be a minimum of 75 times the least dimension.
8.1.2.5 The term "structural composite lumber" refers to either laminated veneer lumber, parallel strand lumber, laminated strand lumber, or oriented strand lumber. These materials are structural members bonded with an exterior adhesive.

NDS - Chap. 8

Table 8.3.1 Applicability of Adjustment Factors for Structural Composite Lumber

			ASD and LRFD									
										K_{F}	ϕ	
$F_{b}{ }^{\prime}=F_{b}$	x	C_{D}^{\prime}	C_{M}	$\mathrm{C}_{\text {c }}$	$\xrightarrow{\mathrm{C}_{\mathrm{L}}{ }^{1}}$	CV^{1}	$\underline{C r}_{\text {r }}$	-	-	2.54	0.85	λ
$\mathrm{F}_{\mathrm{t}}^{\prime}=\mathrm{F}_{\mathrm{t}}$	x	C_{D}	C_{M}	C_{1}	-	CV_{V}	-	-	-	2.70	0.80	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	$C_{\text {d }}$	C_{M}	C_{1}	-	-	-	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	C_{D}	C_{M}	C_{1}	-	-	-	CP_{P}	-	2.40	0.90	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	C_{1}	-	-	-	-	C_{b}	1.67	0.90	-
$E^{\prime}=E$	x	-	C_{M}	C_{7}	-	-	-	-	-	-	-	-
$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }}$		-	C_{M}	C_{1}	-	-	-	-	-	1.76	0.85	-

8.3.2 Load Duration Factor, C_{D} (ASD Only)

All reference design values except modulus of elasticity, E, modulus of elasticity for beam and column stability, $\mathrm{E}_{\min }$, and compression perpendicular to grain, F_{cL}, shall be multiplied by load duration factors, C_{D}, as specified in 2.3.2.

8.3.3 Wet Service Factor, C_{m}

Reference design values for structural composite lumber are applicable to dry service conditions as specified in 8.1.4 where $\mathrm{C}_{\mathrm{M}}=1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture shall be in accordance with information provided by the structural composite lumber manufacturer.

8.3.4 Temperature Factor, \mathbf{C}_{t}

When structural members will experience sustained exposure to elevated temperatures up to $150^{\circ} \mathrm{F}$ (see Appendix C), reference design values shall be multiplied by the temperature factors, C_{t}, specified in 2.3.3 .

8.3.5 Beam Stability Factor, C_{L}

Structural composite lumber bending members shall be laterally supported in accordance with 3.3.3.

8.3.6 Volume Factor, \mathbf{C}_{v}

8.3.6.1 Reference bending design values, F_{b}, for structural composite lumber shall be multiplied by the volume factor, C_{V}, which shall be obtained from the structural composite lumber manufacturer's literature

APA - from E30

Engineered Wood cONSTRUCTION GUIDE

Structural Composite Lumber Selection and Specification AN EXCERPI OF THE ENGINEERED WOOD CONSTRUCTION GUIDE

Slide 5 of 27

Manufactures - e.g. Weyerhaeuser

BEAMS, HEADERS, AND COLUMNS
Featuring Trus Joist ${ }^{\circledR}$ TimberStrand ${ }^{\circledR}$ LSL Microllam ${ }^{\star}$ LVL, and Parallam ${ }^{\otimes}$ PSL

Trusfoist
PARALLAM ${ }^{\oplus}$ PLUS PSL BEAMS, HEADERS
AND COLUMNS
Featuring Trus Joist ${ }^{\text {© }}$ Parallam* ${ }^{\text {© }}$ PL
with Preservative Protection

Structural Composite Lumber

Laminated Veneer Lumber - LVL

- Laminated Veneer Lumber (LVL)
- Veneers bonded together
- Beams, headers, rafters \& scaffold planking

Parallel Strand Lumber - PSL

Parallel Strand Lumber (PSL):

- Manufactured from veneers clipped into long strands in a parallel formation and bonded together
- Strand length-to-thickness ratio is around 300
- Common uses: headers, beams, bearing columns
- Published on a proprietary basis by the manufacturer and in evaluation reports.

Parallel Strand Lumber - PSL

Laminated Strand Lumber - LSL
Oriented Strand Lumber - OSL
Laminated Strand Lumber (LSL):

- Flaked strand length-to-thickness ratio is around 150
- Common uses: studs

Oriented Strand Lumber (OSL):

- Flaked strand length-to-thickness ratio is around 75
- Common uses: studs

Field Notching and Drilling of Glulam (Form S560) Horizontal Hole Drilling

FIGURE 3
ZONES WHERE SMALL HORIZONTAL HOLES ARE PERMITTED IN A UNIFORMLY LOADED, SIMPLY SUPPORTED BEAM

2. Zones where horizontol holes are permitred for possoge of wires, conduit, etc.

Weyerhaeuser - Trus Joist

LSL - LVL - PSL

This guide features Trus Joist ${ }^{\circledR}$ engineered lumber in the following widths and depths:

TimberStrand ${ }^{\circledR}$ LSL
1.55E TimberStrand ${ }^{8}$ LSL sizes:

Widths: $1^{3 / 4} 4^{\prime \prime}$ and $3^{1 / 21} 2^{\prime \prime}$
Depths: $9112^{\prime \prime}, 11^{7 / 8^{\prime \prime}}, 14^{\prime \prime}$, and $16^{\prime \prime}$
1.3E TimberStrand ${ }^{\otimes}$ LSL header sizes:

Width: $3^{1 / 2} 2^{1}$
Depths: $43 / 8^{\prime \prime}$, $51 / 2^{\prime \prime}$, and $71 / 4^{\prime \prime}$
1.3E TimberStrand ${ }^{\oplus}$ LSL column and post sizes:

Microllam ${ }^{\star}$ LVL
2.0E Microllam ${ }^{\text {® }}$ LVL header and beam sizes:

Width: $1^{3 / 4^{\prime \prime}}$

Parallam ${ }^{\circledR}$ PSL
2.0E Parallam ${ }^{\otimes}$ PSL header and beam sizes:

Widths: $3112^{2 \prime}, 5 \frac{1}{2} 4^{"}$, and 7 "
Depths: $\underline{9}^{1 / 4} 4^{\prime \prime}, 99^{1 / 2}, 11^{1 / 4 / 4}, 11^{\prime / 8^{\prime \prime}}, 14^{\prime \prime}, 16^{\prime \prime}$, and $18^{\prime \prime}$
1.8E Parallam ${ }^{\circledR}$ PSL column and post sizes:

For deeper depth Parallam ${ }^{\otimes}$ PSL beams, see the Irus Joist® 2.2E Parallam ${ }^{\otimes}$ PSL
Deep Beam guide, TJ-7001, or contact your Weyerhaeuser representative.
TJ_9000

DESIGN PROPERTIES
$C_{D}=1.0$
Allowable Design Properties ${ }^{(1)}$ (100\% Load Duration)

			Depth											
Grade	Width	Design Property	$43 / 8^{\prime \prime}$	51⁄2"	$\begin{gathered} 51 / 2^{\prime \prime} \\ \text { Plank } \\ \text { Orientation } \end{gathered}$	71/4 ${ }^{\text {" }}$	91/4"	91/2"	111/4"	117/8 ${ }^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$	18"	20"
TimberStrand LSL														
1.3E	$31 / 2^{\prime \prime}$	Moment (ft-lbs)	1,735	2,685	1,780	4,550								
		Shear (lbs)	4,340	5,455	1,925	7,190								
		Moment of Inertia (in. ${ }^{\text {4 }}$)	24	49	20	111								
		Weight (plf)	4.5	5.6	5.6	7.4								
1.55 E	13/4"	Moment (ft-lbs)						5,210		7,975	10,920	14,090		
		Shear (lbs)						3,435		4,295	5,065	5,785		
		Moment of Inertia (in. ${ }^{4}$)						125		244	400	597		
		Weight (plf)						5.2		6.5	7.7	8.8		
	$31 / 2^{\text {" }}$	Moment (ft-lbs)						10,420		15,955	21,840	28,180		
		Shear (lbs)						6,870		8,590	10,125	11,575		
		Moment of Inertia (in. ${ }^{\text {4 }}$)						250		488	800	1,195		
		Weight (plf)						10.4		13	15.3	17.5		
Microllam ${ }^{\text {® LVL }}$														
2.0 E	13/4"	Moment (ft-lbs)		2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23,580
		Shear (lbs)		1,830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6,650
		Moment of Inertia (in. ${ }^{4}$)		24		56	115	125	208	244	400	597	851	1,167
		Weight (plf)		2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	10.2
Parallam ${ }^{\text {PSL }}$														
2.0 E	$31 / 2^{\prime \prime}$	Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665	
		Shear (lbs)					6,260	6,430	7,615	8,035	9,475	10,825	12,180	
		Moment of Inertia (in. ${ }^{4}$)					231	250	415	488	800	1,195	1,701	
		Weight (plf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7	
	51/4"	Moment (ft-liss)					18,625	19,585	26,955	29,855	40,740	52,430	65,495	
		Shear (lbs)					9,390	9,645	11,420	12,055	14,210	16,240	18,270	
		Moment of Inertia (in. ${ }^{\text {4 }}$)					346	375	623	733	1,201	1,792	2,552	
		Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5	
	$7{ }^{\prime \prime}$	Moment (ft-lbs)					24,830	26,115	35,940	39,805	54,325	69,905	87,325	
		Shear (lbs)					12,520	12,855	15,225	16,070	18,945	21,655	24,360	
		Moment of Inertia (in. ${ }^{\text {4 }}$					462	500	831	977	1,601	2,389	3,402	
		Weight (plf)					20.2	20.8	24.6	26.0	30.6	35.0	39.4	

Weyerhaeuser - Trus Joist - LSL - LVL - PSL

DESIGN PROPERTIES

ign	$\text { resses }{ }^{(1)}$	$\begin{aligned} & C_{D}=1.0 \\ & 00 \% \text { Load } \end{aligned}$	uration)							
Grade	Orientation	```G Shear Modulus of Elasticity (psi)```	$\begin{gathered} \text { Modulus } \\ \text { of Elasticity } \\ (\mathrm{psi}) \end{gathered}$	$E_{\text {min }}$ Adjusted Modulus of Elasticity (psi)	F_{b} Flexural Stress ${ }^{(3)}$ (psi)	$\begin{gathered} F_{t} \\ \text { Iension } \\ \text { Stress } \\ (\text { psi) } \end{gathered}$	$\begin{gathered} \mathrm{F}_{c \perp} \\ \text { Compression } \\ \text { Perpendicular } \\ \text { to Grain(5) } \\ (\mathrm{psi}) \end{gathered}$	Foll $_{\text {al }}$ Compression Parallel to Grain (psi)	F_{V} Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ${ }^{(6)}$
TimberStrand ${ }^{\text {LSL }}$										
1.3E	Beam/Column	81,250	1.3×10^{6}	660,750	1,700	1,075	710	1,835	425	$0.50{ }^{(7)}$
	Plank	81,250	1.3×10^{6}	660,750	$1,900{ }^{(8)}$	1,075	$635{ }^{(9)}$	1,835	150	$0.50{ }^{(7)}$
1.55 E	Beam	96,875	1.55×10^{6}	787,815	2,325	1,070 ${ }^{(10)}$	900	2,170	$310^{(10)}$	$0.50{ }^{(7)}$
Microllam ${ }^{\text {LVI }}$										
2.0 E	Beam	125,000	2.0×10^{6}	1,016,535	2,600	1,555	750	2,510	285	0.50
Parallam ${ }^{\text {e PSL }}$										
1.8E	Column	112,500	1.8×10^{6}	914,880	2,400(11)	1,755	545 (11)	2,500	$190{ }^{(11)}$	0.50
2.0 E	Beam	125,000	2.0×10^{6}	1,016,535	2,900	2,025	$625(12)$	2,900 ${ }^{(13)}$	290	0.50

(1) Unless otherwise noted, adjustment to the design stresses for duration of load are permitted
in accordance with the applicable code.
(2) Reference modulus of elasticity for beam and column stability calculations, per NDS®.
(3) For 12^{2} depth. For other depths, multiply F_{b} by the appropriate factor as follows:

- For IimberStrand ${ }^{\Phi}$ LSL, multiply by $\left[\frac{12}{d}\right]^{0.092}$
- For Microllam ${ }^{\oplus}$ LVL, multiply by $\left[\frac{12}{d}\right]^{0.136} C_{F}$
- For Parallam® PSL, multiply by $\left[\frac{12}{d}\right]^{0.111}$
(4) F_{1} has been adjusted to reflect the volume effects for most standard applications.
(5) $\overline{F_{C L}}$ may not be increased for duration of load.
(6) For lateral connection design only.
(7) Specific gravity of 0.58 may be used for bolts installed perpendicular to face and loaded perpendicular to grain.
(8) Values are for thickness up to $31 / 2$ ".
(9) For members less than $13 /{ }^{\prime \prime}$ thick and in plank orientation, use $\mathrm{F}_{\mathrm{c} 1}$ of 670 psi.
(10) Value accounts for large hole capabilities. See Allowable Holes on page 26.
(11) Value shown is for plank orientation.
(12) Use 750 psi for Parallam® PSL identified with plant number 0579
(13) For column applications, use $\mathrm{F}_{\text {cll }}$ of 500 psi. Alternatively, refer to ESR-1387, Table 1, footnote 15 .

TJ_9000.pdf

General Assumptions for Trus Joist ${ }^{\oplus}$ Beams
" Lateral support is required at bearing and along the span at 24" on-center, maximum.

- Bearing lengths are based on each product's bearing stress for applicable grade and orientation.
- All members $71 / 4^{\prime \prime}$ and less in depth are restricted to a maximum deflection of $5 / 16^{\circ}$.
- Beams that are $134^{\prime \prime} \times 16^{\prime \prime}$ and deeper require multiple plies. Some exceptions allowed when using Weyerhaeuser software.
- No camber.
- Beams and columns must remain straight to within 5 L2/4608 (in.) of true alignment. L is the unrestrained length of the member in feet.
For applications not covered in this brochure, contact your Weyerhaeuser representative.
See pages 28 and 29 for multiple-member beam connections.

TimberStrand \otimes LSL, Microllam@ LVL, and untreated Parallam ${ }^{\otimes}$ PSL are intended for dry-use applications

Plank Orientation

Span	Condition	13/4, Width							31/2" Width (2 ply)					
		$51 / 22^{\prime \prime}$	71/4"	91/4"	91/2"	11/1/4	11/8"	$14^{\prime \prime}$	51/2"	71/4"	91/4"		111/4"	11/8"
6^{\prime}	Total Load Deflection L/240 Min. End/Int. Bearing (in.)	474	954	1,285	1,329	1,656	1,781	1,961	948	1,908	2,571	2,659	3,313	3,563
		458	*	*	*	*	*	*	916	*	*	*	*	*
		1.5/3.5	2.2/5.5	2.9/7.4	3.1/7.6	3.8/9.5	4.1/10.2	4.5/11.3	1.5/3.5	2.2/5.5	2.9/7.4	3.1/7.6	3.8/9.5	4.1/10.2
8^{8}	Total Load Deflection L/240 Min. End/lnt. Bearing (in.)	153	342	870	915	1,145	1,224	1,469	307	685	1,741	1,830	2,290	2,449
		*	*	*	*	*	*	*	*	*	*	*	*	*
		1.5/3.5	1.5/3.5	$2.71 / 6.7$	2.817	3.5/8.8	3.8/9.4	4.5/11.3	1.5/3.5	1.5/3.5	$2.7 / 6.7$	2.8/7	3.5/8.8	3.8/9.4
$9^{9}-66^{\prime \prime}$	Total LoadDeflection $\mathbf{L / 2 4 0}$Min. End/lnt. Bearing (in.)	77	174	615	647	888	982	1,212	154	349	1,231	1,294	1,776	1,965
		*	*	543	585	*	*	*	*	*	1,086	1,171	*	*
		1.5/3.5	1.5/3.5	2.2/5.6	2.4/5.9	3.2/8.1	3.6/8.9	4.4/11	1.5/3.5	1.5/3.5	2.215.6	2.4/5.9	3.2/8.1	3.6/8.9
10^{\prime}	Total Load Deflection $\mathrm{L} / 240$ Min. End $/$ Int. Bearing (in.)	62	142	555	583	801	886	1,137	124	284	1,110	1,167	1,602	1,772
		*	*	470	506	*	*	*	*	*	940	1.013	*	*
		1.5/3.5	1.5/3.5	2.1/5.3	2.215 .6	3.1/7.7	3.4/8.5	4.4/10.9	1.5/3.5	1.5/3.5	2.1/5.3	2.215 .6	3.1/7.7	3.4/8.5
12'	Total Load Deflection $\mathrm{L} / 240$ Min. End/Int. Bearing (in.)		67	367	397	554	613	835	57	135	735	794	1,109	1,227
				279	301	488	568	*	*	*	558	602	976	1,137
			1.5/3.5	1.774.3	1.8/4.6	2.6/6.4	2.817 .1	3.9/9.6	1.5/3.5	1.5/3.5	1.774.3	1.8/4.6	2.6/6.4	2.877.1
14'	Total Load Deflection L/240 Min. End/Int. Bearing (in.)			233	252	405	449	611		70	466	505	811	898
				178	193	314	367	585		*	357	386	629	734
				1.5/3.5	1.5/3.5	2.2/5.5	2.4/6.1	3.3/8.3		1.5/3.5	1.5/3.5	1.5/3.5	2.2/5.5	2.4/6.1
16'-6"	Total Load Deflection L/240 Min. End/Int. Bearing (in.)			142	154	255	299	438			285	308	510	598
				110	119	195	228	367			220	238	391	457
				1.5/3.5	1.5/3.5	1.6/4.1	1.9/4.8	$2.8 / 7$			1.5/3.5	1.5/3.5	1.6/4.1	1.9/4.8
18'-6"	Total Load Deflection L/240 Min. End/Int. Bearing (in.)			100	108	181	212	345			200	217	362	425
				78	85	140	164	264			157	170	280	328
				1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.9	2.5/6.2			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.9
20'	Total Load Deflection $\mathrm{L} / 240$ Min. End/lnt. Bearing (in.)			78	85	143	168	274			157	171	286	336
				62	67	111	130	211			125	135	223	261
				1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	2.1/5.4			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5
22'	Total Load Deflection L/240 Min. End/Int. Bearing (in.)			58	63	106	125	206			116	126	213	251
				47	51	84	98	160			94	102	168	197
				1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.8/4.5			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5
24'	Total Load Deflection $\mathrm{L} / 240$ Min. End/lnt. Bearing (in.)					81	95	158			87	95	162	191
						65	76	124			73	79	130	153
						1.5/3.5	1.5/3.5	1.5/3.8			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5
26'	Total Load Deflection L/240 Min. End/Int. Bearing (in.)					62	74	123			67	73	125	148
						51	60	98			$3 /$	62	102	120
						1.5/3.5	1.5/3.5	1.5/3.5			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5
28^{\prime}	Total Load Deflection L/240 Min. End/Int. Bearing (in.)						58	98			52	56	98	117
							48	78			46	50	82	97
							1.5/3.5	1.5/3.5			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5
30^{\prime}	Total Load Deflection L/240 Min. End/Int. Bearing (in.)							78					78	93
								64					67	79
								1.5/3.5					1.5/3.5	1.5/3.5

TJ_9000.pdf

Selection

1. Calculate total beam load
2. Choose beam span in chart
3. Find section to carry load
or
Propping
4. Calculate shear and moment
5. Use properties chart to find section
6. Include adjustment factors: $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{V}}$

LVI
Example - Beam 4
Given: \quad span $=24 \mathrm{ft}$.
D 6 psf Lr 20 psf

1. Calculate total beam load
2. Choose beam span in chart

LoAD in Ply
3. Find section to carry load

$$
D+L_{r}=6+20=26 \text { PSF }
$$

$$
26\left(5^{\prime}\right)=130 \text { PLF }
$$

Example
Beam 4

Span = 24 ft
Load $=130$ plf Lr = 100 plf

Pick $13 / 4$ " x 14 "

LVI - PS - ISL

Example - Beam 4

Given: \quad span $=24 \mathrm{ft}$. D 6 psf Lr 20 psf 130 pf

1. Calculate total beam load
2. Calculate shear and moment
3. Use properties chart to find section
4. Check stresses
5. Check deflection

$V_{\text {max }}=\frac{\omega l}{2}=\frac{130(24)}{2}=1560 *$

Weyerhaeuser - Crus Joist - LSL - LVL - PSL
DESIGN PROPERTIES

LV
Example - Beam 4

Given: \quad span $=24 \mathrm{ft}$.
D 6 psf Lr 20 psf
130 vlf (total load)
M = 9360 ft -lbs
$\mathrm{V}=1560 \mathrm{lbs}$
3. Use properties chart to find section

$$
\begin{aligned}
& H_{\text {MAX }}=\frac{w l^{2}}{8}=\frac{130(24)^{2}}{8}=9360^{1 . *} \\
& V_{\text {max }}=\frac{\omega l}{2}=\frac{130(24)}{2}=1560^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TRY LVL } 2.0 E \frac{13 / 4^{\prime \prime} \times 111 / 4 "}{\prime \prime} \\
& S_{x}=\frac{b d^{2}}{6}=\frac{1.75^{\prime \prime}(11.25)^{2}}{6}=36.91 \mathrm{~m}^{3} \\
& \underline{f_{b}}=\frac{M}{S_{x}}=\frac{9360(12)}{36.91}=3042 \mathrm{ps} \\
& A=1.75(11.25)=19.68 \mathrm{~m}^{2} \\
& f_{V}=\frac{3}{2} \frac{V}{A}=1.5 \frac{1560^{444}}{19.68}=118.8 \mathrm{ps}
\end{aligned}
$$

Weyerhaeuser - Crus Joist - LSL - LVL - PSL

DESIGN PROPERTIES

Design Stresses ${ }^{(1)}$ (100\% Load Duration)

(1) Unless otherwise noted, adjustment to the design stresses for duration of load are permitted in accordance with the applicable code.
(2) Reference modulus of elasticity for beam and column stability calculations, per NOSe
(3) For $12^{" 1}$ depth. For other depths, multiply F_{b} by the appropriate factor as follows:

- For TimberStrand ${ }^{\oplus}$ LSL, multiply by $\left[\frac{12}{4}\right]_{4}^{0.092}$
$\longrightarrow-$ For Microllam ${ }^{\oplus}$ LVL, multiply by $\left[\frac{12}{d}\right]^{0.136}$ CF
- For Parallam@ PSL, multiply by $\left[\frac{12}{d}\right]$
(4) F_{t} has been adjusted to reflect the volume effects for most standard applications.
(5) $F_{c \perp}$ may not be increased for duration of load.
(6) For lateral connection design only.
(7) Specific gravity of 0.58 may be used for bolts installed perpendicular to face and loaded perpendicular to grain.
(8) Values are for thickness up to $31 / 2^{\prime \prime}$.
(9) For members less than $134^{\prime \prime}$ thick and in plank orientation, use $F_{c \perp}$ of 670 psi.

10) Value accounts for large hole capabilities. See Allowable Holes on page 26.
(11) Value shown is for plank orientation.
(12) Use 750 psi for Parallam® PSL identified with plant number 0579
(13) For column applications, use $\mathrm{F}_{\text {cl }}$ of 500 psi. Alternatively, refer to ESR -1387, Table 1, footnote 15 .

University of Michigan, TCAUP

LVI
Example - Beam 4
Given: \quad span $=24 \mathrm{ft}$.
D 6 psf Lr 20 psf 130 pf

Try:
$13 / 4^{\prime \prime} \times 11.25^{\prime \prime}$
4. Check stresses

$$
13 / 4 " \times 11.25 "
$$

F_{b} Adjustment

$$
\begin{aligned}
& C_{D}=1.25^{r} \\
& C_{V}=\left[\frac{12}{d}\right]^{0.136}=\left(\frac{12}{14}\right)^{0.136}=0.979 \\
& C_{L}(\text { PER NDS 3.3.3) } \\
& \frac{\text { BRACED BY RAFTERS }}{} \therefore C_{L}=1.0 \\
& C_{M}, C_{t}, C_{r}=1.0-
\end{aligned}
$$

$$
\begin{aligned}
& L_{V L} 2.0 E \quad 13 / 4^{\prime \prime} \times 11^{\prime} / 4^{\prime \prime} \\
& F_{b}=2600 \mathrm{ps1} \\
& F_{V}=285 \mathrm{ps1} C_{D} \quad C_{F} \\
& F_{b}^{\prime}=2600(1.25)(0.979)=3182 \mathrm{psi} \\
& F_{b}^{\prime}=3182>3042=f_{b} \text { ok V } \\
& F_{V}^{\prime}=285(1.25)=356 \mathrm{psi} \\
& F_{V}^{\prime}=356>118=F_{V} \text { ok }
\end{aligned}
$$

Given: \quad span $=24 \mathrm{ft}$.
Lr 20 psf 100 pf
5. Check deflection
for Lr < L/240
IBC Table 1604.3 DEFLECTION LIMITS $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{n}, \mathrm{i}$

CONSTRUCTION	L or $/ L_{r}$	S or $W^{\mathbf{t}}$	$D+L^{\mathrm{d}, \mathbf{g}}$
Roof members:			
Supporting plaster or stucco ceiling	$/ / 360$	$/ / 360$	$/ / 240$
Supporting nonplaster ceiling	$/ / 240$	$/ / 240$	$/ / 180$
Not supporting ceiling	$/ / 180$	$/ / 180$	$/ / 120$
Floor members	$/ / 360$	-	$/ / 240$
Exterior walls:			
With plaster or stucco finishes	-	$/ / 360$	-
With other brittle finishes	-	$/ / 240$	-
With flexible finishes	-	$/ / 120$	-
Interior partitions:			
With plaster or stucco finishes	$/ / 360$	-	-
With other brittle finishes	$/ / 240$	-	-
With flexible finishes	$/ / 120$	-	-
Farm buildings	-	-	$/ / 180$
Greenhouses	-	-	$/ / 120$

$1.75^{\prime \prime} \times 11.25^{\prime \prime}$
$I=\frac{b d^{3}}{12}=20 \mathrm{am}^{4}$
$\begin{aligned} \Delta & =\frac{5 w 8^{4}}{384 E 1}=\frac{5(100)(24)^{4}(1728)}{384\left(2.0 \times 10^{6}\right) \frac{2088}{[244]}} \\ & =\frac{1.8^{\prime \prime}\left[1.5^{\prime}\right]}{\frac{L}{240}}=\frac{24(12)}{240}=1.2^{\prime \prime}<1.8^{\prime \prime} \quad \therefore \text { FALLS }\end{aligned}$
$1.75^{\prime \prime} \times 14^{\prime \prime}$
$I=\frac{6 d^{3}}{12}=\frac{1.75(14)^{3}}{12}=400 \mathrm{~m}^{4}$
$\Delta=\frac{5 w l^{4}}{384 E I}=\frac{5(100)(24)^{4}(1728)}{384(2000000)(400)}=0.93 \mathrm{~m}$
$\frac{h}{240}=\frac{24(12)}{240}=1.20>0.93 \mathrm{~m}$ ok

Wood
Slide 27 of 27

Weyerhaeuser - Crus Joist - LSL - LVL - PSL DESIGN PROPERTIES

