

Homework problem – Beam Design

Design the central timber beam shown in the floor system using the given species and grade. Use the given floor D-t load plus the beam sellweight based on the given wood density (moisture is already included). Assume dry conditions (MC < 19%) and normal tomporatures. Find the timber soction with the load area to pass the adjusted allowable stress. Finally, calculate the total D+L deflection including creep. Assume 30% of the Live Load is sustained (long-term).

DATASET: 1 2 Wood Species COAST SITKA SPRUCE SPRUCE Span A 19 FT Span B 16 FT Dead Load 19 PSF Live Load 55 PSF Wood density, D 30 PCF actual section width, b 135 IN

ŧ	Question	Your Response
	Tabulated Allow. Bending Stress, Fb	PSI
	Tabulated Allow. Shear Stress, Fv	PSI
	Tabulated E modulus, E	PSI
1	Tabulated Emin modulus, Emin	PSI
	Total point load (D+L)	LBS
	Max total point load moment	FT-LBS
	Final actual section depth, d	IN
	Max selfweight moment (using final d)	FT-LBS
	Final Section Modulus, Sx	IN^3
10	Size factor, CF	
11	Effective length, le	IN
12	Slenderness Ratio, RB	
13	Euler stress, FbE	PSI
14	Factored bending, F*	PSI
15	Beam stability factor, CL	
16	Factored Allow. Bending Stress, F'b	PSI
17	Factored Allow. Shear Stress, F'v	PSI
18	Total maximum moment, Mmax	FT-LBS
19	Total maximum shear force, Vmax	LBS
	Actual bending stress, fb	PSI
21	Actual shear stess, fv	PSI
22	Deflection from floor DL, P_DL	IN
23	Deflection from total floor LL, P_LL	IN
24	Deflection from beam selfweight, w_self	IN
25	Long-Term deflection x Kcr	IN
26	Short-Term deflection	IN

Box beams are built-up beams using dimensioned lumber (2x4 or 2x6) and panels (generally plywood)

The box is framed with the lumber and the sides are skinned with the panels.

The horizontal top and bottom flanges are continuous members as are the vertical ends and internal web stiffeners.

The flanges carry the tension and compression couple (the flexural moment) and the panels carry the shear force.

The internal vertical members brace and stiffen the panels.

- good stiffness and strength
- light weight
- minimal shrinkage, warping or twisting
- ease of fabrication
- · material availability
- speed of installation
- can be insulated if desired

Box Beam

Laminated Beam

APA design with tables

- · choose span
- run down column to find passing capacity
- find cross section A, B or C
- find Panel Specifications: thickness in x/32" and rating (rafter o.c. / joist o.c.)

Papal	Cuesa	Approx. Wt. per ft (lb)		Span (ft)							
Specification	Section	2 x 4	2 x 6	10	12	14	16	18	20	22	24
15/32" 32/16	A	6	8	238*	198*	170*	147	116	94	78	64
15/32" 32/16	В	9	12	339*	283*	242*	212	176	143	118	91
23/32" 48/24	В	11	14	408*	340	291	223	176	143	118	95
23/32" 48/24	С	13	17	374*	312*	267*	234	198	160	133	105
ALLOWABLE L	OADS(0)	OR 16	-INCH	DEEP	ROOF	BEAM	IS OR	HEAD	ER (Ib	/ft)	
Panel	Cross	Appro per f	ox. Wt. ft (Ib)				Spar	n (ft)			
Specification	Section	2 x 4	2 x 6	10	12	14	16	18	20	22	24
15/32" 32/16	А	8	10	336*	280*	240*	210	166	134	111	93
15/32" 32/16	В	10	13	475*	396*	340*	297	264	219	181	152
23/32" 48/24	В	13	16	569*	474*	406	342	270	219	181	152
23/32" 48/24	С	15	19	531*	443*	380*	332*	295	266	219	184
ALLOWABLE L	OADS(a)	OR 20	-INCH	DEEP	ROOF	BEAN	IS OR	HEAD	ER (Ib	/ft)	
Panel	Cross	Appro per f	ox. Wt. ft (Ib)	Span (ft)							
Specification	Section	2 x 4	2 x 6	10	12	14	16	18	20	22	24
15/32" 32/16	A	9	11	440*	367*	315*	273	216	175	144	121
15/32" 32/16	В	12	15	610*	509*	436*	381*	339	297	246	207
23/32" 48/24	В	15	18	728*	607*	520	455	367	297	246	207
23/32" 48/24	С	17	22	693*	577*	495*	433*	385*	346	312	262
ALLOWABLE L	OADS(a)	OR 24	-INCH	DEEP	ROOF	BEAN	IS OR	HEAD	ER (Ib	/ft)	
Panel	Approx. Wt.			Span (ft)							
Specification	Section	2 x 4	2 x 6	10	12	14	16	18	20	22	24
15/32" 32/16	А	11	13	550*	458*	393*	336	266	215	178	149
15/32" 32/16	В	13	16	744*	620*	531*	465*	413	372	312	262
23/32" 48/24	В	16	20	885*	738*	632*	553	465	377	312	262
			0.4	0.5.4*		/108	C00*	1718	107	000	0.40

Box Beams APA design with tables (Z416T 2009)

Z416T 2009

Table assumptions:

- DF No1 or SP No1
- panels: APA expos. 1 4- or 5-ply or OSB
- deflection less than L/240 (total load)
 - nail size 8d common
- · nail spacing:

•

- flanges 1 ½" o.c.
- may be doubled in middle half of span
- end stiffeners 1 ¹/₂" o.c.
- mid stiffeners 3" o.c.

APA design with tables

web panel joint and stiffer layout flange members are continuous

Box Beams

Example:

APA Z416T design with tables

garage door header using 2x4s span = 18 ft factored projected roof load = 35 psf (DL 10 psf + SL 25 psf)

Load on beam: 35 psf x 20 ft / 2 = 350 plf

APA design with tables Example:

Load on beam: 35 psf x 20 ft / 2 = 350 plf

Choose beam:

follow the 18 ft span column no 12" or 16" deep sections work 20" with 367 > 350+15 plf works or

24" with 413 > 350+13 plf works both options use section "B"

20" deep:

23/32" 48/24 panel and DF No1 or 24" deep:

15/32" 32/16 panel and DF No1

In this case the 24" section uses a thinner and lower rated panel and so would be less costly. If the additional depth were a concern the 20" beam could be used.

*Lumber may be No. 2 Douglas-fir or No. 2 southern pine without reduction of tabulated capacity.

Structures I

NAILING LAYOUT

1-1/2" Nail spacing*+

University of Michigan, TCAUP

Box Beams

NDS analysis Based on the previous example find the maximum load capacity.

Load on beam:

D+S = 35 psf x 20 ft / 2 = 350 plf C_D = 1.15

Box Beam Section:

- Douglas Fir No1
- G = 0.5

Nails:

- 8d common
- spacing, s 1 ¹/₂" o.c. flange and ends, 3" o.c. web stiffeners
- rows of nails, R = 2 per web per flange (8 total top and bottom)
- allowable load per nail, F_n = 74 lb/nail
- number of webs, N_{web} = 2

Slide 9 of 18

Nails:

- 8d common
- allowable load per nail, F_n = 74 lb/nail

Box Beams

NDS analysis Based on the previous example find the maximum load capacity.

Box Beam Section:

Webs:

- depth of section, h = 24 in
- thickness 15/32 = 0.46875 in
- grade and rating: APA Rated Sheathing 32/16 4-ply Exp. 1
- number of webs, N_{web} = 2
- axial Stiffness, EA = 4,150,000 lbs/ft width (Panel Design D510)
- bending thickness, t_{par} = EA/(E 12) =4150/(1700 12) = 0.2034 in based on transformed area normalizing E for flange and web.

C_F

• shear capacity $F_v t_v = 81$ lb/in each web

Flanges:

- 2x4 Douglas Fir Larch No. 1
- continuous, no but joints. 2 pcs per flange
- depth of flange, d = 3"
- width of flange, b = 3.5"
- allowable tension stress, $F_t = 675 (1.5) = 1012.5 \text{ psi}$
- Stiffness, E = 1700000 psi

Douglas Fir – Larch No.1 E = 1700000 psi (NDS Supplement 2018) 15/32" 32/16 panel EA = 4,150,000 lbs/ft width (APA D510)

					Design values in pounds per square inch (psi)								
Species and commercial	Size		Tension	Shear	Compression	Compression							
grade	classification	Bending	to grain	to grain	to grain	to grain	Modulus o	f Elasticity					
		Fb	Ft	Fv	F _{c⊥}	Fc	Е	Emin					
DOUGLAS FIR-LARCH													
Select Structural		1,500	1,000	180	625	1,700	1,900,000	690,000					
No. 1 & Btr		1,200	800	180	625	1,550	1,800,000	660,000					
No. 1	2" & wider	1,000	675	180	625	1,500	1,700,000	620,000					
No. 2		900	575	180	625	1,350	1,600,000	580,000					
No. 3		525	325	180	625	775	1,400,000	510,000					

TABLE 8 (Continued)

RATED PANELS DESIGN CAPACITIES

	S	tress Parallel t	to Strength Ax	is	Stress Perpendicular to Strength Axis					
Span	Plywood			1.11	5.6					
Rating	3-ply 4-ply		5-ply	OSB	3-ply 4-ply		5-ply	OSB		
PANELA	XIAL STIFFNE	SS, EA (lbf/ft	of panel widt	h)				đ		
24/0 24/16	3,350,000 3,800,000	3,350,000 3,800,000	3,350,000 3,800,000	3,350,000 3,800,000	2,900,000 2,900,000	2,900,000 2,900,000	2,900,000 2,900,000	2,500,000 ^(a) 2,700,000 ^(a)		
32/16 40/20	4,150,000 5,000,000	4,150,000	4,150,000 5,000,000	4,150,000 5,000,000	3,600,000	3,600,000	3,600,000	2,700,000 2,900,000(b)		
48/24	NA	5,850,000	5,850,000	5,850,000	NA	5,000,000	5,000,000	3,300,000 ^(b)		
16 oc 20 oc	4,500,000 5,000,000	4,500,000 5,000,000	4,500,000 5,000,000	4,500,000 5,000,000	4,200,000 4,500,000	4,200,000 4,500,000	4,200,000 4,500,000	2,700,000 2,900,000(b)		
24 oc	NA	5,850,000	5,850,000	5,850,000	NA	5,000,000	5,000,000	3,300,000 ^(b)		
32 oc 48 oc	NA NA	NA NA	7,500,000 8,200,000	7,500,000 8,200,000	NA NA	NA NA	7,300,000 7,300,000	4,200,000 4,600,000		
Universi	ty of Michigan, TCA	UP		Structures	s I			Slide 13 of 18		

Box Beams

15/32" 32/16 rated panel, 4-ply $F_v t_v$ lbs/in width (APA D510)

 $F_v t_v = 81$ lbs/in

	Str	ess Parallel to	Strength Axis	3	Stress Perpendicular to Strength Axis					
Span		Plywood								
Rating	3-ply	ply 4-ply 5-ply	5-ply	OSB	3-ply	4-ply	5-ply	OSB		
PANEL SH	EAR THROUG	H THE THICK	NESS, F,t, (lbf/	in. of shear-r	esisting panel	length)				
24/0	53	69	80	155	53	69	80	155		
24/16	57	74	86	165	57	74	86	165		
32/16	62	81	93	180	62	81	93	180		
40/20	68	88	100	195	68	88	100	195		
48/24	NA	98	115	220	NA	98	115	220		
16 oc	58	75	87	170	58	75	87	170		
20 oc	67	87	100	195	67	87	100	195		
24 oc	NA	96	110	215	NA	96	110	215		
32 oc	NA	NA	120	230	NA	NA	120	230		
48 oc	NA	NA	160	305	NA	NA	160	305		

equations from APA-H815:

Moment of Inertia, I I_f = 3.5 $(24^3 - (24 - 6)^3 / 12)$ I_f = 2331 in⁴

 $I_w = 2(0.2034 \ 24^3) / 12$ $I_w = 468.6 \ in^4$

 $I_{total} = 2331 + 468.6 = 2800 \text{ in}^4$

Statical Moment of Area, Q Q_f = $3.5 \ 3 (24 - 3) / 2$ Q_f = 110.25 in^3

 $\begin{array}{l} {\rm Q_w} = 2\;(0.2034\;24^2)\,/\,8\\ {\rm Q_w} = 29.29\;in^3 \end{array}$

 $Q_{total} = 110.25 + 29.29 = 139.5 \text{ in}^3$

WEB JOINT LAYOUTS

18

Transformed Section

University of Michigan, TCAUP

Structures I

Slide 15 of 18

Box Beams

Section Capacities:

Max. Moment F = Mc/I $M = F_t I_f / (h/2) (12)$ $M = 1012.5 \text{ lb/in}^2 (2331 \text{ in}^4) / ((24 \text{ in } / 2) (12 \text{ in/ft}))$ M = 16390 ft-lb

Max Web Shear $F_v = V_h Q/Ib$ $V_h = (F_v t_v) I_t (N_{webs}) / Q_t$ $V_h = (81 Ib/in) 2800 in^4 (2) / 139.5 in^3$ $V_h = 3252 Ibs$

Max Nail Shear $V_n = Fn I_t (N_{webs}) (Rows) / (spacing Q_f)$ $V_n = 74 Ib/nail 2800 in^4 2 2 / (1.5 in/nail 110.25 in^3)$ $V_n = 5011 Ibs$

Stiffness EI = E I_t = 1700000 2800 = 4,760,000,000.

Allowable Uniform Load (D+S)

Bending $M = w_b L^2/8$ $w_b = M (C_D) 8 / L^2$ $w_b = 16390 \text{ ft-lb } (1.15) 8 / (18 \text{ ft })^2 = 465 \text{ plf}$

Web Shear $V_h = w_v L / 2$ $w_v = V_h (C_D) 2 / L$ $w_v = 3252 \text{ lbs (1.15) } 2 / 18 \text{ ft} = 415 \text{ plf}$

Nail Shear $V_n = w_n L / 2$ $w_n = V_n (C_D) 2 / L$ $w_n = 5011 \text{ lbs } (1.15) 2 / 18 \text{ ft} = 640 \text{ plf}$

Deflection $\Delta = 5 \text{ K w } L^4 / (384 \text{ EI})$ $\Delta = 5 (1.5) (415) (18)^4 (1728) / (384 4,760,000,000) = 0.31 "$ L/360 = 18(12)/360 = 0.6"

K factor for deflection in composite panel section (from APA testing) for L < 14 ft K = 2.0, else K = 1.5

Structures I

University of Michigan, TCAUP

Box Beams

span: 8 ft depth: 12" flanges: 2x4 S-P-F No2 webs: 1⁄4" 3-ply plywood nails: 8d common at 3" o.c.

Capacity:

4000 lbs first cracking 8000 ft-lbs 5000 lbs ultimate 10000 ft lbs

Structures I

4.4375″

24"

18

Slide 17 of 18

15 32

Initial failure: web shear further failure: nail pull out and head pull through ultimate failure: tension flange

University of Michigan, TCAUP

Structures I

Slide 19 of 18