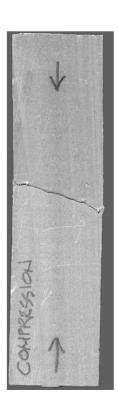


University of Michigan, TCAUP

Arch 544

Slide 2 of 38



Failure Mode - Strength

Short Columns - fail by crushing

$$f_c = \frac{P}{A} \le F_c \qquad \qquad A = \frac{P}{F_c}$$

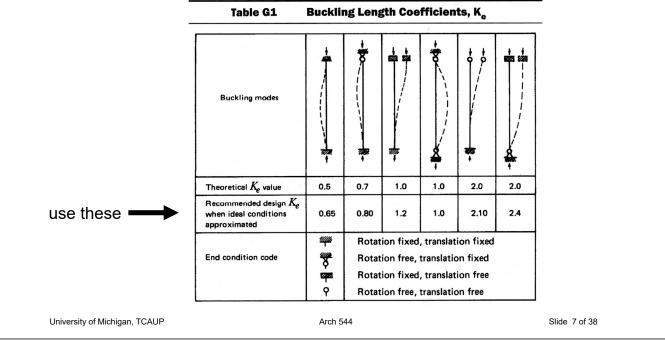
- f_c = Actual compressive stress
- A = Cross-sectional area of column (in²)
- P = Load on the column
- F_c = Allowable compressive stress per codes

Failure Modes – Stability

Long Columns – fail by buckling

NDS Equation Traditional Euler $F_{cE} = \frac{0.822E'_{min}}{2}$ $f_{cr} = \frac{\pi^2}{\mu}$ E = Modulus of elasticity of the column material (psi) E'min = reduced E modulus (psi) K = Stiffness (curvature mode) factor le = Ke l (inches) L = Column length between ends d (inches) (inches) $0.822 = \pi^2/12$ r = radius of gyration = $\sqrt{I/A}$ (inches) $r = d/\sqrt{12}$ Arch 544 University of Michigan, TCAUP Slide 5 of 38 у-у Slenderness Ratio $\ell_{\rm e}/d$ х-х **Slenderness Ratios:** The larger ratio will govern. Try to balance for efficiency. d = 3.5 Slenderness Limited to < 50 b = 1.5 ratios for an 8 ft long 2x4: $\begin{array}{rcl} X-X & Y-Y \\ Ke=1.0 & Ke=1.0 \\ Re=1.0(96) & le=1.0(96) \\ \hline \frac{le}{d}=\frac{96}{3.5}=27.4 & \frac{Re}{b}=\frac{96}{1.5}=64 \end{array}$ 8'

End Support Conditions


NDS 3.7.1.2

 ${\rm K}_{\rm e}$ is a constant based on the end conditions

 ℓ is the actual length

 $\ell_{\rm e}$ is the effective length (curved part)

$$\ell_{e} = K_{e}\ell$$

Allowable Flexure Stress F_c'

Actual Flexure Stress f_b

 \boldsymbol{F}_{c} from tables determined by species and grade

 $f_c = P/A$

 F_{c} ' = F_{c} (adjustment factors)

$$F_{c}' \ge f_{c}$$

	Base Design Values for Visually Graded Dimension Lumber (2"-4" thick) ^{1,2}
(Cont.)	(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE WITH	H TABLE 4/	A ADJUSTM	ENT FACTO	ORS		
			Desi	gn values in pour	ids per square ind	ch (psi)		
Species and commercial grade	Size classification	Bending F _b	Tension parallel to grain F _t	Shear parallel to grain F _v	Compression perpendicular to grain F _{c⊥}	Compression parallel to grain F _c	Modulus of Elasticity E	Grading Rules Agency
EASTERN HEMLOCK-BA	LSAM FIR							
Select Structural		1250	575	140	335	1200	1,200,000	
No.1		775	350	140	335	1000	1,100,000	
No.2	2" & wider	575	275	140	335	825	1,100,000	
No.3		350	150	140	335	475	900,000	NELMA
Stud and the second second second	2" & wider	450	200	140	335	525	900,000	NSLB
Construction	and the second second	675	300	140	335	1050	1,000,000	
Standard	2"-4" wide	375	175	140	335	850	900,000	
Utility		175	75	- 140	335	550	800,000	

Adjustment Factors

		ASD only		ASD and LRFD							LRFD only				
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	$_{ m H}^{ m A}$ Format Conversion Factor	- Resistance Factor	Time Effect Factor
$F_b' = F_b$	х	CD	C _M	Ct	C_L	C _F	C_{fu}	Ci	Cr	-	-	-	2.54	0.85	λ
$F_t = F_t$	x	CD	См	Ct	-	CF	-	Ci	-	-	-	-	2.70	0.80	λ
$F_v = F_v$	х	CD	См	Ct	-	-	-	Ci	-	-	-	-	2.88	0.75	λ
$F_c = F_c$	х	CD	См	Ct	-	C _F	-	Ci	-	Ср	-	-	2.40	0.90	λ
$\mathbf{F}_{\mathbf{c}\perp} = \mathbf{F}_{\mathbf{c}\perp}$	x	-	См	Ct	-	-	-	Ci	-	-	-	Cb	1.67	0.90	-
E _. = E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-
$E_{min} = E_{min}$	x	-	См	Ct	-	-	-	Ci	-	-	CT	-	1.76	0.85	-

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

University of Michigan, TCAUP

Arch 544

Slide 9 of 38

Allowable Flexure Stress F_c'

 F_{c} from tables determined by species and grade

 $F_{c}^{'} = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})$

Adjustment factors for compression:

- C_D Load Duration Factor
- C_t Temperature Factor

Table 2.3.2 Frequently Used LoadDuration Factors, C_p^{-1}

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

Table 2.3.3 Temperature Factor, Ct								
Reference Design Values	In-Service Moisture –	Ct						
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>				
Ft, E, Emin	Wet or Dry	1.0	0.9	0.9				
	Dry	1.0	0.8	0.7				
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5				

 Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

(1) Actual stress due	
to (DL)	\leq (0.9) (Design value)
(2) Actual stress due	
to (DL+LL)	\leq (1.0) (Design value)
(3) Actual stress due	
to (DL+WL)	\leq (1.6) (Design value)
(4) Actual stress due	
to (DL+LL+SL)	\leq (1.15) (Design value)
(5) Actual stress due	
to (DL+LL+WL)	\leq (1.6) (Design value)
(6) Actual stress due	
to (DL+SL+WL)	\leq (1.6) (Design value)
(7) Actual stress due	
to (DL+LL+SL+WL)	\leq (1.6) (Design value)

Allowable Flexure Stress F_c' (For Dimensioned Lumber)

F_c from tables determined by species and grade

$$F_{c}^{,i} = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})$$

Adjustment factors for compression:

C_M Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service	Factors,	См	
F_{b}	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	F _c	$E \mbox{ and } E_{\mbox{\scriptsize min}}$
0.85*	1.0	0.97	0.67	0.8**	0.9
* when (E.)	$(C_r) \le 1.15$	0 psi , $C_{y} = 1.0$	0		

** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

		Size Factors,	C _F	1	
		F	b	Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	values and size fac	ors	
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP

Arch 544

Slide 11 of 38

Allowable Flexure Stress F_{c} ' (For Timbers)

 F_{c} from tables determined by species and grade

 $F_{c}^{,i} = F_{c}^{,i} (C_{D}^{,i} C_{M}^{,i} C_{E}^{,i} C_{P}^{,i} C_{P}^{,i})$

Adjustment factors for compression:

C_M Moisture Factor

C_F Size Factor

Size Factor, C_F

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Size Factors, C _F					
Depth	Fb	F,	Fc		
d>12"	$(12/d)^{1/9}$	1.0	1.0		
$d \le 12"$	1.0	1.0	1.0		

Wet Service Factor, C_M

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

Wet Servi	ce Facto	ors, CM
-----------	----------	---------

F_{b}	\mathbf{F}_{t}	$F_{\rm v}$	$F_{c\perp}$	F_{c}	$E \mbox{ and } E_{\mbox{\tiny min}}$
1.00	1.00	1.00	0.67	0.91	1.00

Allowable Flexure Stress F_c'

 $\rm F_{c}$ from tables determined by species and grade

$$F_{c}$$
 = F_{c} ($C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}$)

 $\begin{array}{l} \mbox{Adjustment factors for compression}:\\ C_i \ \mbox{Incising Factor} \end{array}$

Table 4.3.8 Incising Factors, C,

Design Value	Ci	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
$F_{c\perp}$	1.00	

University of Michigan, TCAUP

Arch 544

Slide 13 of 38

Allowable Flexure Stress F_c'

F_c from tables determined by species and grade

 $F_{c}^{'} = F_{c}^{'} (C_{D}^{'} C_{M}^{'} C_{t}^{'} C_{F}^{'} C_{i}^{'} C_{P}^{'})$

3.7 Solid Columns

3.7.1 Column Stability Factor, C_P

3.7.1.1 When a compression member is supported throughout its length to prevent lateral displacement in all directions, $C_P = 1.0$.

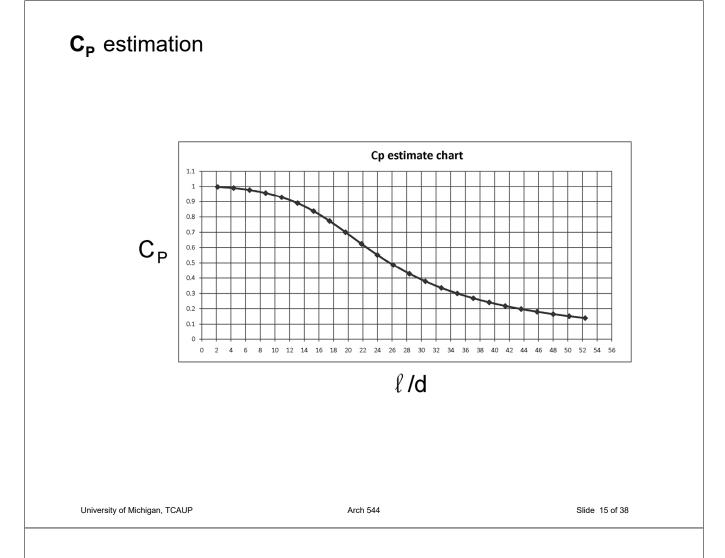
3.7.1.2 The effective column length, ℓ_e , for a solid column shall be determined in accordance with principles of engineering mechanics. One method for determining effective column length, when end-fixity conditions are known, is to multiply actual column length by the appropriate effective length factor specified in Appendix G, $\ell_e = (K_e)(\ell)$.

3.7.1.3 For solid columns with rectangular cross section, the slenderness ratio, ℓ_e/d , shall be taken as the larger of the ratios ℓ_e/d_1 or ℓ_{e2}/d_2 (see Figure 3F) where each ratio has been adjusted by the appropriate buck-ling length coefficient, K_e, from Appendix G.

3.7.1.4 The slenderness ratio for solid columns, ℓ_{e}/d , shall not exceed 50 except that during construction ℓ_{e}/d shall not exceed 75.

3.7.1.5 The column stability factor shall be calculated as follows:

$$\frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \quad (3.7-1)$$


where:

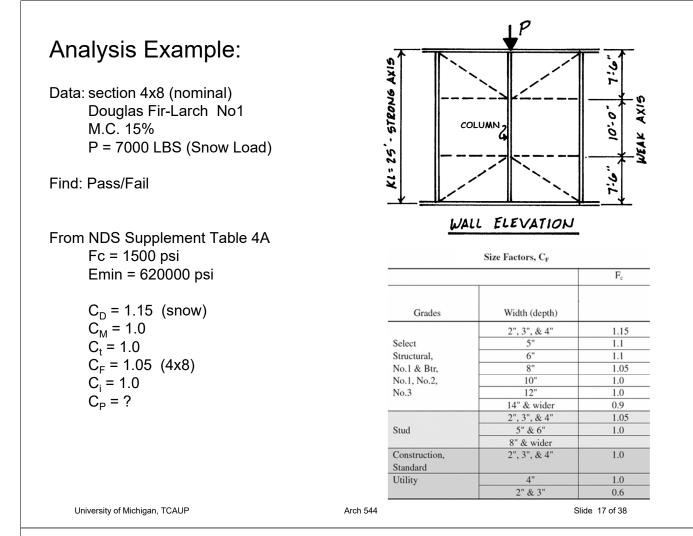
 $C_p =$

 F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}}{(\ell_e / d)^2}$$

- c = 0.8 for sawn lumber
- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

Analysis of Wood Columns


Data:

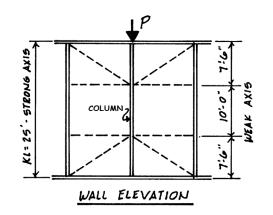
- Column <u>size</u>, length
- Support conditions
- Material properties F_c, E
- Load

Required:

- Pass/Fail or margin of safety
- 1. Calculate slenderness ratio $\ell_{\rm e}/{\rm d}$ largest ratio governs. Must be < 50
- 2. Find adjustment factors (all except C_P) $C_D C_M C_t C_F C_i$
- 3. Calculate C_P
- 4. Determine F'c by multiplying the tabulated Fc by all the above factors
- 5. Calculate the actual stress: fc = P/A
- Compare Allowable and Actual stress.
 F'c > fc passes

Analysis Example:

Calculate C_P


$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} \quad (3.7-1)$$

where:

 F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}'}{(\ell_e / d)^2}$$

- c = 0.8 for sawn lumber
- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

Analysis Example:

Calculate C_P

$$C_{p} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \quad (3.7-1)$$

where:

 F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}}{(\ell_e / d)^2}$$

- c = 0.8 for sawn lumber
- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

$$F_{CE} = \frac{0.822 \ E'min}{(-fe/d)^2}$$

= $\frac{0.822(620000)}{(41.4)^2}$
= $297.6 \ psi$
$$F_{E}^{*} = 1500(1.15 \ 1.05)$$

= $1811.25 \ psi$
$$F_{EE} = \frac{297.6}{1811.25} = 0.164$$

$$C = 0.8$$

University of Michigan, TCAUP

Analysis Example:

Calculate C_P

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} \quad (3.7-1)$$

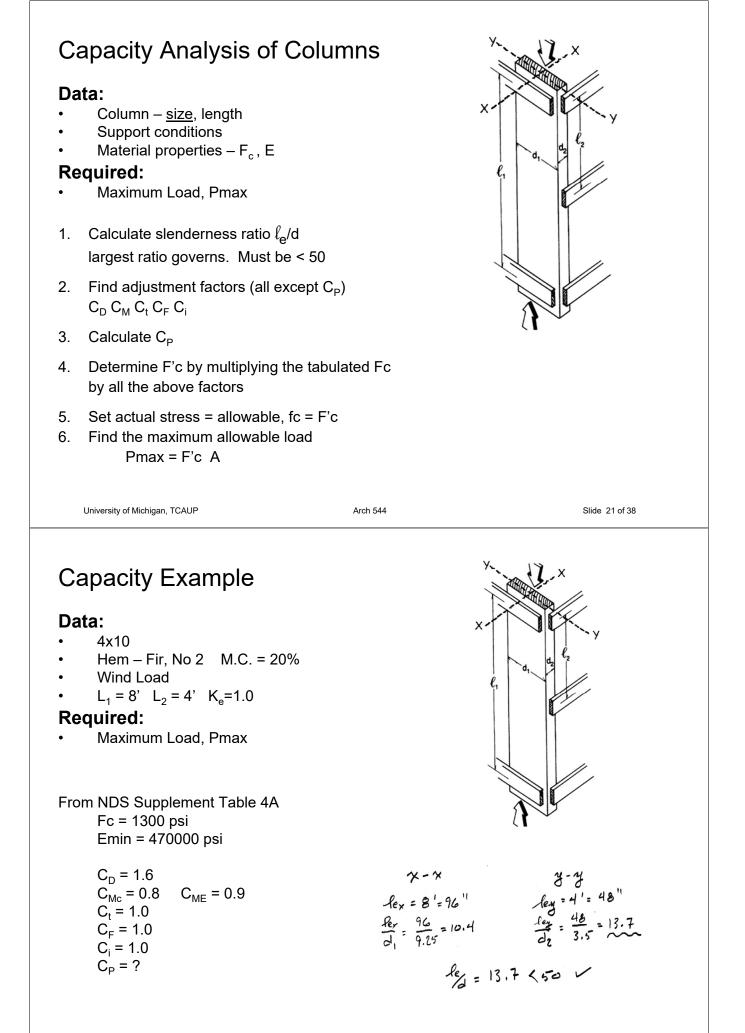
where:

 F_c^* = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}'}{(\ell_e / d)^2}$$

- c = 0.8 for sawn lumber
- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

Compare Allowable and Actual stress F'c > fc passes


$$C_{p} = \frac{1+0.164}{2(0.8)} - \left[\frac{1+0.164}{2(0.8)} \right]^{2} - \frac{0.164}{.8}$$

$$C_{p} = 0.1584$$

$$F_{c}^{1} = 1500 (1.15 + 1.05 + 0.1584)$$

= 286.9 psi
$$F_{c} = \frac{P}{A} = \frac{7000^{4}}{25.38} = 275.8 \text{ psi}$$

Arch 544

Slide 19 of 38

Allowable Flexure Stress F_c'

4 x 10 M.C 20% Fc = 1300psi

 $\rm F_{c}$ from tables determined by species and grade

 $F_{c}' = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})$

Adjustment factors for compression:

C_M Moisture Factor

C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	W	et Service	Factors,	См	
F_{b}	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	Fc	$E \mbox{ and } E_{\mbox{\scriptsize min}}$
0.85*	1.0	0.97	0.67	0.8**	0.9
* when (E.)	(C) < 1.15		0		

* when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$ ** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

Size Factors, C_F F_b Ft $F_{\rm c}$ Thickness (breadth) 2" & 3" Grades Width (depth) 4" 2", 3", & 4" 1.5 1.5 1.5 1.15 Select 1.4 1.4 5" 1.4 1.1 6" Structural, 1.3 1.3 1.3 1.1 8" No.1 & Btr, 1.2 1.3 1.2 1.05 No.1, No.2, 10" 1.1 1.2 1.1 1.0 No.3 12" 1.0 1.0 1.1 1.0 14" & wider 0.9 1.0 0.9 0.9 2", 3", & 4" 1.1 1.1 1.1 1.05 5" & 6" 1.0 1.0 1.0 1.0 Stud 8" & wider Use No.3 Grade tabulated design values and size fac ors Construction, 2", 3", & 4" 1.0 1.0 1.0 1.0 Standard 4" 1.0 1.0 Utility 1.0 1.0 2" & 3" 0.4 0.4 0.6

University of Michigan, TCAUP

Arch 544

Slide 23 of 38

Capacity Example

Find C_P

$$F_{cE} = \frac{0.822 \text{ E'min}}{(f_{e/d})^2}$$

$$= \frac{0.822(470000(0.9))}{13.7^2}$$

$$= 1848.7 \text{ ps}$$

$$\frac{F_{CE}}{F_{C}^{*}} = \frac{1848.7}{1664} = 1,111$$

$$C_{P} = 0.7261$$

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} (3.7-1)$$

where:

F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_o (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}}{\left(\ell_e / d\right)^2}$$

c = 0.8 for sawn lumber

- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

Find the maximum load, Pmax

$$F_{c} = 1300 (1.6 \ 0.8 \ 0.7261)$$

= 120 B psi
 $P_{max} = F_{c}^{1} A = 1208 (32.38) = 39.115$ *

University of Michigan, TCAUP

Timber Column Design

Given:

- Lumber species, grade
- Conditions of use
- Load

Required:

- column size
- 1. Find adjustment factors (all except C_P)

 $\mathbf{C}_{\mathsf{D}} \: \mathbf{C}_{\mathsf{M}} \: \mathbf{C}_{\mathsf{t}} \: \mathbf{C}_{\mathsf{F}} \: \mathbf{C}_{\mathsf{i}}$

- 2. Guess C_P
- 3. Estimate Area and d (based on bracing)
- 4. Calculate slenderness ratio I_e/d

largest ratio governs. Must be < 50

- 5. Calculate C_P
- 6. Determine F'c by multiplying the tabulated Fc by all the above factors
- 7. Revise Area: A = P/F'c
- 8. Revise C_P

University of Michigan, TCAUP

Arch 544

Slide 33 of 38

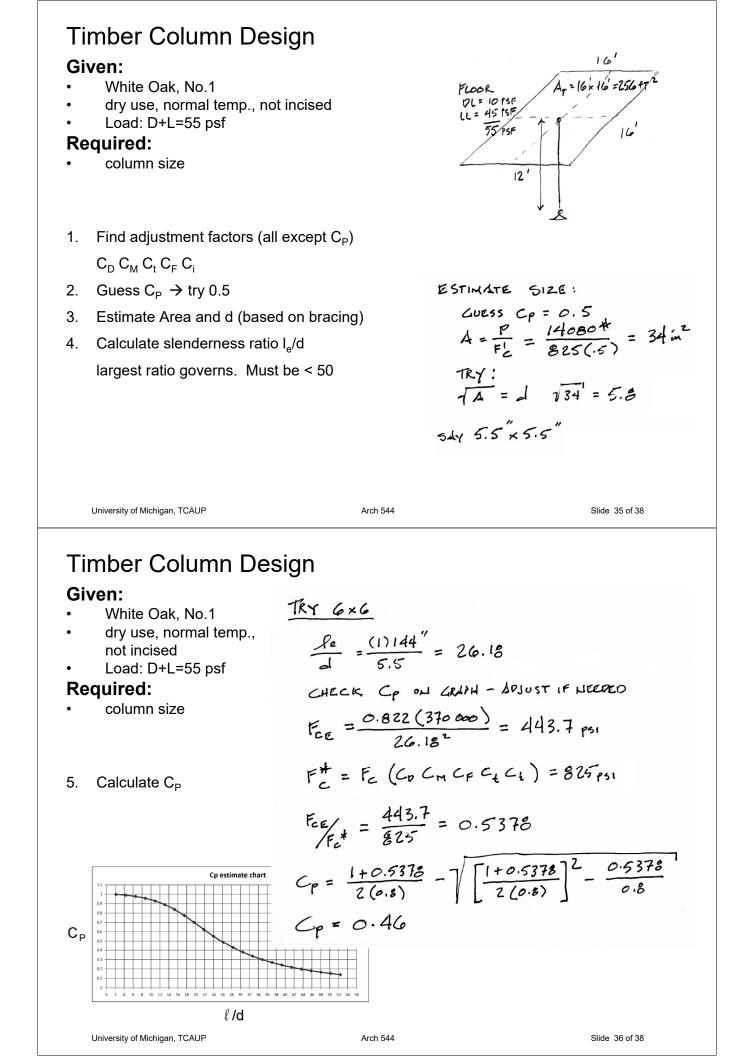
Timber Column Design

Given:

- White Oak, No.1
- dry use, normal temp., not incised
- Load: D+L=55 psf

Required:

- column size
- 1. Find adjustment factors (all except C_P)


 $C_D C_M C_t C_F C_i$

2. Guess $C_P \rightarrow try 0.5$

$\frac{16'}{PLOGR} = \frac{16'}{A_T} = \frac{16'}{16'} = \frac{16'}{12'} = \frac{16'}{16'} = \frac{16'}{16'}$

Table 4D	Reference Design Values for Visually Graded Timbers (5" $ imes$ 5" and larger) ^{1,3}
(Cont.)	(Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE W	ITH TAB	LE 4D AI	DJUSTMENT	FACTORS				
Species and commercial Grade	Size classification	Design values in pounds per square inch (psi)								
		Bending F _b		Shear parallel to grain F _v	Compression perpendicular to grain F _{c⊥}	Compression parallel to grain F _c	Modulus of Elasticity		Specific Gravity ⁴	Grading Rules Agency
							Е	Emin	G	
WHITE OAK							and the second second			
Select Structural No.1 No.2	Beams and Stringers	1,400 1,200 750	825 575 375	205 205 205	800 800 800	900 775 475	1,000,000 1,000,000 800,000	370,000 370,000 290,000		
Select Structural No.1 No.2	Posts and Timbers	1,300 1,050 600	875 700 400	205 205 205	800 800 800	950 825 400	1,000,000 1,000,000 800,000	370,000 370,000 290,000	0.73	NELMA

Timber Column Design

Given:

- White Oak, No.1
- dry use, normal temp., not incised
- Load: D+L=55 psf

Required:

- column size
- Determine F'c by multiplying the 6. tabulated Fc by all the above factors
- Revise Area: A = P/F'c7.
- 8. Revise C_P

Table 1B	Section	Properties	of Standard	Dressed
----------	---------	------------	-------------	---------

			X-)	(AXIS	Y-Y AXIS		
Nominal Size b x d	Standard Dressed Size (S4S) b x d in. x in.	Area of Section A in. ²	Section Modulus S _{xx} in. ³	Moment of Inertia I _{xx} in. ⁴	Section Modulus S _{vy} in. ³	Moment of Inertia I _{yy} in. ⁴	
Timbers (5" x 5" and large	er) ²	a starter	3.49			
Post and	Timber (see NDS	5 4.1.3.4 a	nd NDS 4.	1.5.3)			
5 x 5	4-1/2 x 4-1/2	20.25	15.19	34.17	15.19	34.17	
6 x 6	5-1/2 x 5-1/2	30.25	27.73	76.26	27.73	76.26	
6 x 8	5-1/2 x 7-1/2	41.25	51.56	193.4	37.81	104.0	
8 x 8	7-1/2 x 7-1/2	56.25	70.31	263.7	70.31	263.7	
8 x 10	7-1/2 x 9-1/2	71.25	112.8	535.9	89.06	334.0	

University of Michigan, TCAUP

Arch 544

Slide 37 of 38

Timber Column Design

Design Aids

example of a column chart

from AWC Manual for Engineered Wood Construction - 2005

Table M4.5-2a ASD Column Capacity^{1,2,3,4,5} (P', P'_x, P'_y), Timbers

ASD/LRFD MANUAL FOR ENGINEERED WOOD CONSTRUCTION

REVISED FC

TRY 6×8

Fc= 825 (0.46)= 379.5

 $A = \frac{P}{F_{1}^{\prime}} = \frac{14080^{*}}{379.5^{*}} = 37.1 \text{ m}^{2}$

Gx6: A = 30.25 < 37.1 : FAILS

6×8 = 41.25m2 7 37.1

 $le/d = \frac{144^{"}}{5.5"} = 26.18$ (SAME AS 6×6) Cp = 0.46 (NO CILANGE) :. 6×8 PASSES

6-inch nominal thickness (5.5 inch dry dressed size), $C_p = 1.0$.

		Column Capacity (lbs)										
	0.8	Select Structural		No. 1			No. 2					
2 02 02 M		6 x 6	6	x 8	6 x 6	6	x 8	6 x 6	6	x 8		
	1000	6" width	8"	width	6" width	8"	width	6" width	8"	width		
	Column	(=5.5")	(=7	7.5")	(=5.5")	(=7.5")		(=5.5")	(=7.5")			
Species	Length (ft)	P	P'x	P'y	P	P'x	P'y	P'	P'x	P'y		
005.94	2	34,500	47,200	47,000	30,000	41,100	40,900	21,000	28,800	28,700		
	4	33,400	46,400	45,500	29,200	40,500	39,800	20,500	28,400	28,000		
	6	31,100	45,000	42,500	27,600	39,500	37,600	19,600	27,800	26,700		
Douglas Fir-	8	27,300	42,700	37,300	24,800	37,800	33,800	18,000	26,800	24,500		
Larch	10	22,300	39,200	30,400	20,900	35,300	28,500	15,700	25,400	21,400		
	12	17,500	34,600	23,900	16,800	31,800	22,900	13,000	23,400	17,700		
	14	13,700	29,500	18,700	13,300	27,800	18,200	10,500	20,900	14,300		
	16	10,900	24,700	14,800	10,700	23,700	14,600	8,500	18,200	11,500		
40,808	2	29,200	40,000	39,800	25,500	34,900	34,800	17,300	23,600	23,600		
	4	28,200	39,300	38,500	24,800	34,400	33,800	16,900	23,400	23,000		
	6	26,200	38,100	35,800	23,300	33,500	31,800	16,100	22,900	22,000		
	8	22,800	36,000	31,100	20,800	31,900	28,400	14,900	22,100	20,300		
Hem-Fir	10	18,400	32,900	25,100	17,400	29,700	23,700	13,100	21,000	17,800		
	12	14,300	28,800	19,600	13,800	26,600	18,900	10,900	19,400	14,800		
	14	11,200	24,300	15,200	10,900	23,000	14,900	8,800	17,400	12,000		
	16	8,800	20,200	12,000	8,700	19,500	11,900	7,200	15,200	9,800		
and such a	2	28,500	39,000	38,900	24,800	33,900	33,800	15,800	21,600	21,500		
	4	27,700	38,500	37,800	24,200	33,500	33,000	15,500	21,400	21,100		
	6	26,200	37,500	35,700	23,100	32,800	31,500	15,000	21,000	20,400		
Couthorn Dino	8	23,500	35,900	32,100	21,200	31,600	28,900	14,100	20,500	19,200		
Southern Pine	10	19,900	33,500	27,100	. 18,400	29,900	25,100	12,700	19,700	17,400		
	12	16,000	30,200	21,800	15,200	27,500	20,700	11,000	18,500	15,000		
	14	12,700	26,400	17,300	12,300	24,500	16,700	9,200	17,100	12,500		
	16	10,100	22,400	13,800	9,900	21,300	13,500	7,600	15,300	10,300		
1.20 24	2	24,000	32,900	32,700	21,000	28,800	28,700	15,000	20,600	20,500		
	4	23,400	32,400	31,900	20,500	28,400	28,000	14,700	20,300	20,100		
	6	22,100	31,600	30,100	19,600	27,800	26,700	14,100	19,900	19,300		
Spruce-Pine-Fir	8	19,900	30,300	27,100	18,000	26,800	24,500	13,100	19,300	17,900		
opruce-Pine-Pir	10	16,800	28,300	23,000	15,700	25,400	21,400	11,600	18,400	15,800		
	12	13,600	25,600	18,500	13,000	23,400	17,700	9,800	17,100	13,400		
	14	10,800	22,400	14,700	10,500	20,900	14,300	8,000	15,500	11,000		
	16	8,600	19,100	11,800	8,500	18,200	11,500	6,500	13,700	8,900		

P^{*}₁ values are based on a column continuously braced against weak axis buckling.
 P^{*}₁ values are based on a column continuously braced against strong axis buckling.
 To obtain LFPD capacity, see NUS Appendix X.
 To bulated values apply to members in a dry service condition, C_M = 1.0; normal temperature range, C₁ = 1.0; and unincised members, C₁ = 1.0.
 Column capacities are based on concentric axial loads only and pin-pin end conditions (K₂ = 1.0 per NDS Appendix Table G1).