Architecture 544

Wood Columns

- Failure Modes
- Euler Equation
- End Conditions and Lateral Bracing
- Analysis of Wood Columns
- Design of Wood Columns

Failure Modes

FLEXURE

AXIAL

Strength

$$
f_{b}=\frac{M c}{I} \quad f_{v}=\frac{V Q}{I b}
$$

$$
f_{c}=\frac{P}{A}
$$

Stability

Serviceability

Euler Buckling (elastic buckling)

$$
\begin{aligned}
& r=\sqrt{\frac{I}{A}} \\
& I=A r^{2}
\end{aligned}
$$

- A = Cross sectional area (in ${ }^{2}$)
- $\quad E=$ Modulus of elasticity of the material ($\mathrm{l} / \mathrm{i} / \mathrm{in}^{2}$)
- $\quad \mathrm{K}=$ Stiffness (curvature mode) factor

- $\quad L=$ Column length between pinned ends (in.)
- $\quad \mathrm{le}=\mathrm{KL}$

Failure Mode - Strength

Short Columns - fail by crushing

$$
f_{c}=\frac{P}{A} \leq F_{c} \quad A=\frac{P}{\underline{F_{c}}}
$$

- $\quad f_{c}=$ Actual compressive stress
- $\quad \mathrm{A}=$ Cross-sectional area of column (in ${ }^{2}$)
- $P=$ Load on the column
- $\quad F_{c}=$ Allowable compressive stress per codes

Failure Modes - Stability

Long Columns - fail by buckling

Traditional Euler

- $E=$ Modulus of elasticity of the column material (psi)
- $\quad \mathrm{K}=$ Stiffness (curvature mode) factor
- $\quad L=$ Column length between ends (inches)
- $\quad r=$ radius of gyration $=\sqrt{\mathrm{I} / \mathrm{A}}$ (inches)

NDS Equation

- \quad E'min $=$ reduced E modulus (psi)
- $\quad \ell \mathrm{e}=\mathrm{Ke} \ell$ (inches)
- d (inches)
$-0.822=\pi^{2} / 12$

Slenderness Ratio $\ell_{\mathrm{e}} / \mathrm{d}$

Slenderness Ratios:

The larger ratio will govern.
Try to balance for efficiency.
Slenderness Limited to < 50

$d=3.5$

$\mathrm{b}=1.5$
ratios for an 8 ft long 2×4 :

$$
\begin{array}{ll}
x-x & y-Y \\
K_{e}=1.0 & K_{e}=1.0 \\
l_{e}=1.0(96) & l_{e}=1.0(96) \\
\frac{l_{e}}{d}=\frac{96}{3.5}=27.4 & \frac{l_{e}}{b}=\frac{96}{1.5}=64>50
\end{array}
$$

End Support Conditions

NDS 3.7.1.2
K_{e} is a constant based on the end conditions
ℓ is the actual length
ℓ_{e} is the effective length (curved part)
$\ell=K_{e} \ell$

Table G1	Buckling Length Coefficients, $\mathrm{K}_{\mathbf{e}}$					
	X					
Buckling modes					$\underbrace{1}_{1} \begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ \frac{1}{4} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ k \\ \hline \end{gathered}$
Theoretical K_{e} value	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design K_{e} when ideal conditions approximated	0.65	0.80		1.0	2.10	2.4
End condition code		Rotation fixed, translation fixed Rotation free, translation fixed Rotation fixed, translation free Rotation free, translation free				

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$

Actual Flexure Stress f_{b}
F_{c} from tables determined by species and grade
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$ (adjustment factors)

$$
F_{c}{ }_{c} \geq f_{c}
$$

Table 4A Base Design Values for Visually Graded Dimension Lumber (2"-4" thick) ${ }^{\mathbf{1 , 2}}$ (Cont.)
(All species except Southern Pine - see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

Adjustment Factors
Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

			ASD and LRFD												
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	C_{D}	C_{M}	C_{t}	C_{L}	C_{F}	C_{fu}	C_{i}	C_{r}	-	-	-	2.54	0.85	λ
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}$	x	C_{D}	C_{M}	C_{t}	-	C_{F}	-	C_{i}	-	-	-	-	2.70	0.80	λ
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	C_{D}	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	$\underline{C_{D}}$	C_{M}	$\mathrm{C}_{\text {t }}$	-	C_{F}	-	C_{1}	-	C_{P}	-	-	2.40	0.90	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	-	Cb_{b}	1.67	0.90	-
$E^{\prime}=E$	x	-	C_{M}	C_{t}	-	-	-	C_{1}	-	-	-	-	-	-	-
$\mathrm{E}_{\text {min }}^{\prime}=\mathrm{E}_{\text {min }}$	x	-	C_{M}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{1}	-	-	C_{T}	-	1.76	0.85	-

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$

F_{c} from tables determined by species and grade
$F_{c}^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$

Adjustment factors for compression:
C_{D} Load Duration Factor
C_{t} Temperature Factor

Table 2.3.3 Temperature Factor, \mathbf{C}_{t}

Reference Design Values	$\begin{gathered} \text { In-Service } \\ \text { Moisture } \\ \text { Conditions }{ }^{1} \end{gathered}$	$\mathrm{C}_{\text {t }}$		
		$\mathrm{T} \leq 100^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}<\mathrm{T} \leq 125^{\circ} \mathrm{F}$	$125^{\circ} \mathrm{F}<\mathrm{T} \leq 150^{\circ} \mathrm{F}$
$\mathrm{F}_{\mathrm{t}}, \mathrm{E}, \mathrm{E}_{\text {min }}$	Wet or Dry	1.0	0.9	0.9
$\mathrm{F}_{\mathrm{b}}, \mathrm{~F}_{\mathrm{v}}, \mathrm{~F}_{\mathrm{c}} \text {, and } \mathrm{F}_{\mathrm{c} \perp}$	Dry	1.0	0.8	0.7
	Wet	1.0	0.7	0.5
1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.				

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C D}^{1}{ }^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ${ }^{2}$	2.0	Impact Load

(1) Actual stress due to (DL) $\leq(0.9)$ (Design value)
(2) Actual stress due to (DL+LL)
(3) Actual stress due to ($\mathrm{DL}+\mathrm{WL}$)
(4) Actual stress due to (DL+LL+SL) $\leq(1.15)$ (Design value)
(5) Actual stress due to (DL+LL+WL) $\leq(1.6)$ (Design value)
(6) Actual stress due to (DL+SL+WL) $\leq(1.6)$ (Design value)
(7) Actual stress due to (DL+LL+SL+WL) $\leq(1.6)$ (Design value)

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$ (For Dimensioned Lumber)

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor
C_{F} Size Factor

Wet Service Factor, C_{M}
When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors,					
F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
0.85*	1.0	0.97	0.67	0.8**	0.9
* when $\left(\mathrm{F}_{\mathrm{b}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 1,150 \mathrm{psi}, \mathrm{C}_{\mathrm{M}}=1.0$ ** when $\left(\mathrm{F}_{\mathrm{c}}\right)\left(\mathrm{C}_{\mathrm{F}}\right) \leq 750$ psi, $\mathrm{C}_{\mathrm{M}}=1.0$					

Size Factorr $\widehat{\mathrm{C}_{\mathrm{F}}}$					
Grades	Width (depth)	F_{b}		F_{t}	$\underline{F_{c}}$
		Thickness (breadth)			
		$2^{\prime \prime}$ \& 3"	4"		
Select Structural, No. 1 \& Btr, No.1, No.2, No. 3	2", $3^{\prime \prime}$, \& 4"	1.5	1.5	1.5	1.15
	5	1.4	1.4	1.4	1.1
	$6 "$	1.3	1.3	1.3	1.1
	8"	1.2	1.3	1.2	1.05
	$10^{\prime \prime}$	1.1	1.2	1.1	1.0
	12 "	1.0	1.1	1.0	1.0
	14 " \& wider	0.9	1.0	0.9	0.9
Stud	2", 3", \& 4"	1.1	1.1	1.1	1.05
	$5 " \& 6 "$	1.0	1.0	1.0	1.0
	8" \& wider	Use No. 3 Grade tabulated design values and size fac			
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" \& 3"	0.4	-	0.4	0.6

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$ (For Timbers)

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor
C_{F} Size Factor

Size Factor, C_{F}

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Wet Service Factor, C_{M}

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

Wet Service Factors, C_{m}

F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $\mathrm{E}_{\text {min }}$
1.00	1.00	1.00	0.67	0.91	1.00

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\prime}$

F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$

Adjustment factors for compression :
C_{i} Incising Factor

Table 4.3.8 Incising Factors, $\mathbf{C}_{\mathbf{i}}$

Design Value	$\mathbf{C}_{\mathbf{i}}$
$\mathrm{E}, \mathrm{E}_{\min }$	0.95
$\mathrm{~F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{t}} \mathrm{F}_{\mathrm{c}} \mathrm{F}_{\mathrm{v}}$	0.80
$\mathrm{~F}_{\mathrm{c} \perp}$	1.00

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$

F_{c} from tables determined by species and grade

$$
F_{c}^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)
$$

3.7 Solid Columns

3.7.1 Column Stability Factor, $\mathbf{C}_{\boldsymbol{p}}$

3.7.1.1 When a compression member is supported throughout its length to prevent lateral displacement in all directions, $\mathrm{C}_{\mathrm{P}}=1.0$.
3.7.1.2 The effective column length, ℓ_{e}, for a solid column shall be determined in accordance with principles of engineering mechanics. One method for determining effective column length, when end-fixity conditions are known, is to multiply actual column length by the appropriate effective length factor specified in Appendix G, $\ell_{\mathrm{e}}=\left(\mathrm{K}_{\mathrm{e}}\right)(\boldsymbol{\ell})$.
3.7.1.3 For solid columns with rectangular cross section, the slenderness ratio, $\ell_{\mathrm{e}} / \mathrm{d}$, shall be taken as the larger of the ratios $\ell_{\mathrm{e} 1} / \mathrm{d}_{1}$ or $\ell_{\mathrm{e} 2} / \mathrm{d}_{2}$ (see Figure 3 F) where each ratio has been adjusted by the appropriate buckling length coefficient, K_{e}, from Appendix G .
3.7.1.4 The slenderness ratio for solid columns, ℓ_{d} / d, shall not exceed 50 except that during construction $\ell_{\mathrm{e}} / \mathrm{d}$ shall not exceed 75 .
3.7.1.5 The column stability factor shall be calculated as follows:
$C_{P}=\frac{1+\left(F_{O E} / F_{\mathrm{c}}^{*}\right)}{2 \underline{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{OE}} / \mathrm{F}_{\mathrm{C}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}}$
where:
$\mathrm{F}_{\mathrm{c}}{ }^{*}=$ reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$\mathrm{F}_{\mathrm{CE}}=\frac{0.822 \mathrm{E}_{\text {min }}{ }^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
$c=0.8$ for sawn lumber
$\mathrm{c}=0.85$ for round timber poles and piles
$c=0.9$ for structural glued laminated timber or structural composite lumber

C_{P} estimation

Analysis of Wood Columns

Data:

- Column - size, length
- Support conditions
- Material properties - F_{c}, E
- Load

Required:

- Pass/Fail or margin of safety

1. Calculate slenderness ratio $\ell_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be <50 -

2. Find adjustment factors (all except C_{P}) $C_{D} C_{M} C_{t} C_{F}$
3. Calculate C_{P}
4. Determine F'c by multiplying the tabulated Fc by all the above factors
5. Calculate the actual stress: $\mathrm{fc}=P / A$
6. Compare Allowable and Actual stress.

F'c >fc passes

Analysis Example:

Data: section 4×8 (nominal) Douglas Fir-Larch No M.C. 15\% P = 7000 LBS (Snow Load)

Find: Pass/Fail

From NDS Supplement Table 4A
Pc $=1500 \mathrm{psi}$ Amin $=620000$ psi
$C_{D}=1.15$ (snow)
$\mathrm{C}_{\mathrm{M}}=1.0$
$\mathrm{C}_{\mathrm{t}}=1.0$ -
$C_{F}=1.05(4 \times 8)$
$\mathrm{C}_{\mathrm{i}}=1.0$ -
$C_{P}=$?
\qquad

Analysis Example:

Calculate C_{P}

$$
\begin{equation*}
C_{p}=\frac{1+\left(F_{c E} / F_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}} \tag{3.7-1}
\end{equation*}
$$

where:
$\mathrm{F}_{\mathrm{c}}{ }^{\circ}=$ reference compression design value aralleI to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$\mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\mathrm{mn}}{ }^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
$c=0.8$ for saw lumber
$\mathrm{c}=0.85$ for round timber poles and piles
$\mathrm{c}=0.9$ for structural glued laminated timber or structural composite lumber

$$
\begin{array}{rlrl}
x-x & y-y \\
l_{x}=25^{\prime}=\frac{300^{\prime \prime}}{} & \operatorname{le}_{y}=10^{\prime} & =120^{\prime \prime} \\
l_{e x} / d_{1}=\frac{300^{\prime \prime}}{7.25^{\prime \prime}} & l_{e y} / d_{2} & =\frac{120^{\prime \prime}}{3.5^{\prime \prime}} \\
& =41.4 & & =34.3 \\
l e l d & =41.4<50
\end{array}
$$

Analysis Example:

Calculate C_{P}

$$
\begin{equation*}
\mathrm{C}_{\mathrm{p}}=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\underline{\mathrm{c}}}} \tag{3.7-1}
\end{equation*}
$$

where:
$F_{c}{ }^{*}=$ reference compression design value paraltel to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$\mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\text {min }}{ }^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
$c=0.8$ for saw lumber
$c=0.85$ for round timber poles and piles
$c=0.9$ for structural glued laminated timber or structural composite lumber

$$
\begin{aligned}
F_{\text {CE }} & =\frac{0.822 E_{\text {min }}^{\prime}}{\left(\mathrm{le}_{e} / \mathrm{d}\right)^{2}} \\
& =\frac{0.822(620000)}{(41.4)^{2}} \\
& =297.6 \mathrm{psi}- \\
F_{C}^{*} & =1500(1.15 \mathrm{p} .05) \\
& =\frac{1811.25 \mathrm{pi}}{\mathrm{pi}} \\
F_{C E} / F_{C}^{*} & =\frac{297.6}{1811.25}=0.164 \\
C & =0.8
\end{aligned}
$$

Analysis Example:

Calculate C_{P}
$C_{p}=\frac{1+\left(F_{\mathrm{c}} / F_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / F_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}}{\mathrm{c}}}$
where:
$\mathrm{F}_{\mathrm{c}}{ }^{\circ}=$ reference compression design value paralleI to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$F_{c E}=\frac{0.822 E_{\text {min }}{ }^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
$\mathrm{c}=0.8$ for awn lumber
$c=0.85$ for round timber poles and piles
$\mathrm{c}=0.9$ for structural glued laminated timber or structural composite lumber

Compare Allowable and Actual stress F'c >fo passes

$$
C_{p}=\frac{1+0.164}{2(0.8)}-\sqrt{\left[\frac{1+0.164}{2(0.8)}\right]^{2}-\frac{0.164}{.8}}
$$

$$
C_{p}=0.1584
$$

$$
\begin{aligned}
C_{D} & C_{F} \\
F_{C}^{\prime} & =1500(1.15 \\
& C_{p} \\
& \left.=\frac{286.9}{} 0.1584\right) \\
f_{C} & =\frac{P}{A}=\frac{7000^{*}}{25.38 \mathrm{~m}^{2}}=275.8 \mathrm{ps} 1
\end{aligned}
$$

$\mathrm{F}_{\mathrm{c}}^{\prime}>\mathrm{Fe}_{\mathrm{c}} \checkmark$ ok $286>275$

Capacity Analysis of Columns

Data:

- Column - size, length
- Support conditions
- Material properties $-\mathrm{F}_{\mathrm{c}}, \mathrm{E}$

Required:

- Maximum Load Pmax

1. Calculate slenderness ratio $\ell_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be < 50
2. Find adjustment factors (all except C_{P})

$$
C_{D} C_{M} C_{t} C_{F} C_{i}
$$

3. Calculate C_{P} -
4. Determine F'c by multiplying the tabulated Fc by all the above factors
5. Set actual stress $=$ allowable, $\mathrm{fc}=\mathrm{F}$ ' C
6. Find the maximum allowable load

$$
\text { Pmax }=\text { F'c A }
$$

Capacity Example

Data:

- 4×10
- Hem - Fir, No 2 M.C. $=\underline{20 \%}$
- Wind Load
- $\mathrm{L}_{1}=8^{\prime} \mathrm{L}_{2}=4^{\prime} \mathrm{K}_{\mathrm{e}}=1.0$

Required:

- Maximum Load, Pmax

From NDS Supplement Table 4A
Fc = 1300 psi

Emin $=470000$ psi
$C_{D}=1.6$ WIND
$C_{M C}=0.8 \quad C_{M E}=0.9$
$C_{t}=1.0$
$C_{F}=1.0$
$C_{i}=1.0$
$C_{P}=? \approx 0.75$

Allowable Flexure Stress $\mathrm{F}_{\mathrm{c}}{ }^{\text {' }}$

4×10 M.C 20% Kc $=\underline{1300}$ psi
F_{c} from tables determined by species and grade
$F_{c}{ }^{\prime}=F_{c}\left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}\right)$
Adjustment factors for compression:
C_{M} Moisture Factor
C_{F} Size Factor

Wet Service Factor, C_{M}
When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Capacity Example

Find C_{P}

$$
\begin{aligned}
F_{C E} & =\frac{0.822 E_{\text {min }}^{\prime}}{\left(l_{e} / d\right)^{2}} \\
& =\frac{0.822(470000(0.9))}{13.7^{2}} \\
& =1848.7 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
F_{c}^{*} & =1300(1.60 .8) \\
& =1664 \cdot \mathrm{psi}
\end{aligned}
$$

$$
F_{C E} / \xi_{C}^{*}=\frac{1848.7}{1664}=1.111
$$

$$
C_{p}=0.7261
$$

$$
\begin{equation*}
C_{p}=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}} \tag{3.7-1}
\end{equation*}
$$

where:
$\mathrm{F}_{\mathrm{c}}{ }^{*}=$ reference compression design value aralleI to grain multiplied by all applicable adjustment factors except C_{p} (see 2.3), psi
$\mathrm{F}_{\mathrm{cE}}=\frac{0.822 \mathrm{E}_{\text {min }}^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}}$
$c=0.8$ for saw lumber
$c=0.85$ for round timber poles and piles
$c=0.9$ for structural glued laminated timber or structural composite lumber

Find the maximum load, Pax

$$
\begin{aligned}
& =1208 \mathrm{p}^{5} \\
& P_{\text {max }}=F_{c}^{\prime} A=1208(32.38)=39115^{*}
\end{aligned}
$$

Timber Column Design

Given:

- Lumber species, grade
- Conditions of use $C_{p}-C_{F}$
- Load

Required:

- column size

1. Find adjustment factors (all except C_{P})

$$
C_{D} C_{M} C_{t} C_{F} C_{i}
$$

\rightarrow 2. Guess C_{P}
3. Estimate Area and d (based on bracing)
4. Calculate slenderness ratio I_{e} / d largest ratio governs. Must be < 50
5. Calculate C_{P}
6. Determine F'c by multiplying the tabulated Fc by all the above factors
7. Revise Area: $A=P / F ' c$

8. Revise C_{p}

Timber Column Design

Given:

- White Oak, No. 1
- dry use, normal temp., not incised
- Load: D+L=55 psf

Required:

- column size

1. Find adjustment factors (all except C_{P})
$C_{D} C_{M} C_{t} \dot{C}_{F} C_{i}$

2. Guess $\underline{C}_{P} \rightarrow$ try 0.5

Table 4D Reference Design Values for Visually Graded Timbers (5" x 5" and larger) ${ }^{1,3}$
(Cont.) (Tabulated design values are for normal load duration and dry service conditions, unless specified otherwise. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4D ADJUSTMENT FACTORS										
Species and commercial Grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		$\begin{gathered} \text { Bending } \\ F_{b} \\ \hline \end{gathered}$	Tension parallel to grain$\qquad$$\mathrm{F}_{\mathrm{t}}$	Shear parallel to grainF_{v}	Compression perpendicular to grain $\mathrm{F}_{\mathrm{c} \perp}$	Compression parallel to grain F_{c}	Modulus of Elasticity			
							E	$\mathrm{E}_{\text {min }}$		
WHITE OAK										
Select Structural	Beams and Stringers	$\begin{aligned} & 1,400 \\ & 1,200 \\ & 750 \end{aligned}$	$\begin{aligned} & 825 \\ & 575 \\ & 375 \end{aligned}$	$\begin{aligned} & 205 \\ & 205 \\ & 205 \end{aligned}$	800 800 800	900775475	$\begin{gathered} \hline 1,000,000 \\ 1,000,000 \\ 800,000 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 370,000 \\ & 370,000 \\ & 290,000 \\ & \hline \end{aligned}$	0.73	NELMA
No. 1										
No. 2										
Select Structural	Posts and	1,300	875	205	800	950	1,000,000	370,000		
No. 1		1,050	700	205	800	825	1,000,000	370,000		
No. 2		600	400	205	800	400	800,000	290,000		

Timber Column Design

Given:

- White Oak, No. 1
- dry use, normal temp., not incised
- Load: D+L=55 psf

Required:

- column size

1. Find adjustment factors (all except C_{P})

$$
C_{D} C_{M} C_{t} C_{F} C_{i}
$$

2. Guess $C_{P} \rightarrow$ try 0.5
3. Estimate Area and d (based on bracing)
4. Calculate slenderness ratio I_{e} / d largest ratio governs. Must be < 50

$$
\begin{aligned}
& \text { ESTIMATE SIZE: } \\
& \text { CURS } C_{p}=0.5 \\
& A=\frac{p}{F_{C}^{\prime}}=\frac{14080 *^{\prime}}{825(.5)}=34 \mathrm{~m}^{2} \\
& T_{R} Y: \\
& \sqrt{A}=d \quad \sqrt{34^{\prime}}=5.8^{\prime \prime} \\
& \text { SAY } 5.5^{\prime \prime} \times 5.5^{\prime \prime}
\end{aligned}
$$

Timber Column Design

Given:

- White Oak, No. 1

TRy 6×6

- dry use, normal temp., not incised
- Load: D+L=55 psf

Required:

$$
\frac{l_{e}}{d}=\frac{(1) 144^{\prime \prime}}{5.5}=26.18
$$

- column size

$$
\text { CHECK } C_{p} \text { on LRAIH - SDJOST IF NEEDED }
$$

$$
F_{C_{E}}=\frac{0.822(370000)}{26.18^{2} 1.0}=443.7 \mathrm{psi}
$$

5. Calculate C_{P}

$$
F_{C}^{*}=F_{C}\left(C_{D} C_{M} C_{F} C_{t} C_{i}\right)=825 \mathrm{PSI}
$$

$$
F_{C E} / F_{c}^{*}=\frac{443.7}{E 25}=0.5378
$$

Timber Column Design

Given:

- White Oak, No. 1
- dry use, normal temp., not incised
- Load: D+L=55 psf

Required:

- column size

6. Determine F'c by multiplying the tabulated Ec by all the above factors
7. Revise Area: A = P/F'c
8. Revise C_{P}

Table 1B Section Properties of Standard Dressed

Timbers (5" $\times 5$ 5" and larger) ${ }^{2}$
Post and Timber (see NDS 4.1.3.4 and NDS 4.1.5.3)

5×5	$4-1 / 2 \times 4-1 / 2$	20.25	15.19	34.17	15.19	34.17
6×6	$5-1 / 2 \times 5-1 / 2$	30.85	27.73	76.26	27.73	76.26
6×8	$5-1 / 2 \times 7-1 / 2$	41.25	51.56	193.4	37.81	104.0
8×8	$7-1 / 2 \times 7-1 / 2$	56.25	70.31	263.7	70.31	263.7
8×10	$7-1 / 2 \times 9-1 / 2$	71.25	112.8	535.9	89.06	334.0

$$
\begin{aligned}
& \text { REVISED } \frac{F_{c}^{\prime}}{C_{p}} \\
& F_{C}^{\prime}=825(0.46)=379.5 \\
& A=\frac{P}{F_{C}^{\prime}}=\frac{14080}{379.5 \%^{2} / m^{2}}=37.1 \mathrm{~m}^{2} \\
& 6 \times 6: A=30.25<37.1 \therefore F A 1 L S \\
& 6 \times 8=41.25 \mathrm{~m}^{2}>37.1
\end{aligned}
$$

$$
\text { TRy } 6 \times 8
$$

$$
l_{e} / d=\frac{144^{\prime \prime}}{5.5^{\prime \prime}}=\frac{26.18}{\left(\sin 4 \theta^{2} 6 \times 6\right)}
$$

$$
c_{p}=0.46 \text { (No cis, }
$$

$$
\therefore 6 \times 8 \text { PAsses }
$$

Timber Column Design

Design Aids

ASD/LRFD MANUAL FOR ENGINEERED WOOD CONSTRUCTION
example of a column chart
from AWC Manual for Engineered
Wood Construction - 2005
14080 *

